亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Datalog^E is the extension of Datalog with existential quantification. While its high expressive power, underpinned by a simple syntax and the support for full recursion, renders it particularly suitable for modern applications on knowledge graphs, query answering (QA) over such language is known to be undecidable in general. For this reason, different fragments have emerged, introducing syntactic limitations to Datalog^E that strike a balance between its expressive power and the computational complexity of QA, to achieve decidability. In this short paper, we focus on two promising tractable candidates, namely Shy and Warded Datalog+/-. Reacting to an explicit interest from the community, we shed light on the relationship between these fragments. Moreover, we carry out an experimental analysis of the systems implementing Shy and Warded, respectively DLV^E and Vadalog.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Coordinated Multiple views (CMVs) are a visualization technique that simultaneously presents multiple visualizations in separate but linked views. There are many studies that report the advantages (e.g., usefulness for finding hidden relationships) and disadvantages (e.g., cognitive load) of CMVs. But little empirical work exists on the impact of the number of views on visual anlaysis results and processes, which results in uncertainty in the relationship between the view number and visual anlaysis. In this work, we aim at investigating the relationship between the number of coordinated views and users analytic processes and results. To achieve the goal, we implemented a CMV tool for visual anlaysis. We also provided visualization duplication in the tool to help users easily create a desired number of visualization views on-the-fly. We conducted a between-subject study with 44 participants, where we asked participants to solve five analytic problems using the visual tool. Through quantitative and qualitative analysis, we discovered the positive correlation between the number of views and analytic results. We also found that visualization duplication encourages users to create more views and to take various analysis strategies. Based on the results, we provide implications and limitations of our study.

Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many areas, such as medicine and banking, is continuously rising. However, insights on the effective collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by addressing human limitations. However, it may also evoke human bias, especially in the form of automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our study design. Subsequentially, we conduct an online experiment with regard to hotel review classifications and discuss first results. We expect our research to contribute to the design and development of safe hybrid intelligence systems.

Multi-Agent Systems (MAS) are notoriously complex and hard to verify. In fact, it is not trivial to model a MAS, and even when a model is built, it is not always possible to verify, in a formal way, that it is actually behaving as we expect. Usually, it is relevant to know whether an agent is capable of fulfilling its own goals. One possible way to check this is through Model Checking. Specifically, by verifying Alternating-time Temporal Logic (ATL) properties, where the notion of strategies for achieving goals can be described. Unfortunately, the resulting model checking problem is not decidable in general. In this paper, we present a verification procedure based on combining Model Checking and Runtime Verification, where sub-models of the MAS model belonging to decidable fragments are verified by a model checker, and runtime monitors are used to verify the rest. Furthermore, we implement our technique and show experimental results.

Cryptocurrency has been extensively studied as a decentralized financial technology built on blockchain. However, there is a lack of understanding of user experience with cryptocurrency exchanges, the main means for novice users to interact with cryptocurrency. We conduct a qualitative study to provide a panoramic view of user experience and security perception of exchanges. All 15 Chinese participants mainly use centralized exchanges (CEX) instead of decentralized exchanges (DEX) to trade decentralized cryptocurrency, which is paradoxical. A closer examination reveals that CEXes provide better usability and charge lower transaction fee than DEXes. Country-specific security perceptions are observed. Though DEXes provide better anonymity and privacy protection, and are free of governmental regulation, these are not necessary features for many participants. Based on the findings, we propose design implications to make cryptocurrency trading more decentralized.

With the rapid development of multimedia technology, Augmented Reality (AR) has become a promising next-generation mobile platform. The primary theory underlying AR is human visual confusion, which allows users to perceive the real-world scenes and augmented contents (virtual-world scenes) simultaneously by superimposing them together. To achieve good Quality of Experience (QoE), it is important to understand the interaction between two scenarios, and harmoniously display AR contents. However, studies on how this superimposition will influence the human visual attention are lacking. Therefore, in this paper, we mainly analyze the interaction effect between background (BG) scenes and AR contents, and study the saliency prediction problem in AR. Specifically, we first construct a Saliency in AR Dataset (SARD), which contains 450 BG images, 450 AR images, as well as 1350 superimposed images generated by superimposing BG and AR images in pair with three mixing levels. A large-scale eye-tracking experiment among 60 subjects is conducted to collect eye movement data. To better predict the saliency in AR, we propose a vector quantized saliency prediction method and generalize it for AR saliency prediction. For comparison, three benchmark methods are proposed and evaluated together with our proposed method on our SARD. Experimental results demonstrate the superiority of our proposed method on both of the common saliency prediction problem and the AR saliency prediction problem over benchmark methods. Our data collection methodology, dataset, benchmark methods, and proposed saliency models will be publicly available to facilitate future research.

With the advent of open source software, a veritable treasure trove of previously proprietary software development data was made available. This opened the field of empirical software engineering research to anyone in academia. Data that is mined from software projects, however, requires extensive processing and needs to be handled with utmost care to ensure valid conclusions. Since the software development practices and tools have changed over two decades, we aim to understand the state-of-the-art research workflows and to highlight potential challenges. We employ a systematic literature review by sampling over one thousand papers from leading conferences and by analyzing the 286 most relevant papers from the perspective of data workflows, methodologies, reproducibility, and tools. We found that an important part of the research workflow involving dataset selection was particularly problematic, which raises questions about the generality of the results in existing literature. Furthermore, we found a considerable number of papers provide little or no reproducibility instructions -- a substantial deficiency for a data-intensive field. In fact, 33% of papers provide no information on how their data was retrieved. Based on these findings, we propose ways to address these shortcomings via existing tools and also provide recommendations to improve research workflows and the reproducibility of research.

Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.

Multi-camera vehicle tracking is one of the most complicated tasks in Computer Vision as it involves distinct tasks including Vehicle Detection, Tracking, and Re-identification. Despite the challenges, multi-camera vehicle tracking has immense potential in transportation applications including speed, volume, origin-destination (O-D), and routing data generation. Several recent works have addressed the multi-camera tracking problem. However, most of the effort has gone towards improving accuracy on high-quality benchmark datasets while disregarding lower camera resolutions, compression artifacts and the overwhelming amount of computational power and time needed to carry out this task on its edge and thus making it prohibitive for large-scale and real-time deployment. Therefore, in this work we shed light on practical issues that should be addressed for the design of a multi-camera tracking system to provide actionable and timely insights. Moreover, we propose a real-time city-scale multi-camera vehicle tracking system that compares favorably to computationally intensive alternatives and handles real-world, low-resolution CCTV instead of idealized and curated video streams. To show its effectiveness, in addition to integration into the Regional Integrated Transportation Information System (RITIS), we participated in the 2021 NVIDIA AI City multi-camera tracking challenge and our method is ranked among the top five performers on the public leaderboard.

The intelligent reflecting surface (IRS) alters the behavior of wireless media and, consequently, has potential to improve the performance and reliability of wireless systems such as communications and radar remote sensing. Recently, integrated sensing and communications (ISAC) has been widely studied as a means to efficiently utilize spectrum and thereby save cost and power. This article investigates the role of IRS in the future ISAC paradigms. While there is a rich heritage of recent research into IRS-assisted communications, the IRS-assisted radars and ISAC remain relatively unexamined. We discuss the putative advantages of IRS deployment, such as coverage extension, interference suppression, and enhanced parameter estimation, for both communications and radar. We introduce possible IRS-assisted ISAC scenarios with common and dedicated surfaces. The article provides an overview of related signal processing techniques and the design challenges, such as wireless channel acquisition, waveform design, and security.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司