亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients. Its applications span various fields, including mathematics, physics, engineering, and several medical sciences. Motivated by our interest in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ convex analysis techniques to analytically determine equivalents of Lagrange multipliers for optimization problems with inequality constraints, specifically a weighted LASSO with voxel-wise weighting. We investigate this problem under assumptions on the fidelity term $\Vert{Ax-b}\Vert_2^2$, either concerning the sign of its gradient or orthogonality-like conditions of its matrix. To be more precise, we either require the sign of each coordinate of $2(Ax-b)^TA$ to be fixed within a rectangular neighborhood of the origin, with the side lengths of the rectangle dependent on the constraints, or we assume $A^TA$ to be diagonal. The objective of this work is to explore the relationship between Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically in the mentioned cases where this relationship can be computed explicitly. As they scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as tuning parameters for the weighted LASSO, prompting the question of their potential effective use as tuning parameters in applications like MR image reconstruction and denoising. This work represents an initial step in this direction.

相關內容

在數學優化中,拉格朗日乘數法是一種用于尋找受等式約束的函數的局部最大值和最小值的策略(即,必須滿足所選變量值必須完全滿足一個或多個方程式的條件)。它以數學家約瑟夫·路易斯·拉格朗日命名。基本思想是將受約束的問題轉換為某種形式,以便仍可以應用無約束問題的派生檢驗。函數的梯度與約束的梯度之間的關系很自然地導致了原始問題的重構,即拉格朗日函數。

When applying Hamiltonian operator splitting methods for the time integration of multi-species Vlasov-Maxwell-Landau systems, the reliable and efficient numerical approximation of the Landau equation represents a fundamental component of the entire algorithm. Substantial computational issues arise from the treatment of the physically most relevant three-dimensional case with Coulomb interaction. This work is concerned with the introduction and numerical comparison of novel approaches for the evaluation of the Landau collision operator. In the spirit of collocation, common tools are the identification of fundamental integrals, series expansions of the integral kernel and the density function on the main part of the velocity domain, and interpolation as well as quadrature approximation nearby the singularity of the kernel. Focusing on the favourable choice of the Fourier spectral method, their practical implementation uses the reduction to basic integrals, fast Fourier techniques, and summations along certain directions. Moreover, an important observation is that a significant percentage of the overall computational effort can be transferred to precomputations which are independent of the density function. For the purpose of exposition and numerical validation, the cases of constant, regular, and singular integral kernels are distinguished, and the procedure is adapted accordingly to the increasing complexity of the problem. With regard to the time integration of the Landau equation, the most expedient approach is applied in such a manner that the conservation of mass is ensured.

The joint bidiagonalization (JBD) process iteratively reduces a matrix pair $\{A,L\}$ to two bidiagonal forms simultaneously, which can be used for computing a partial generalized singular value decomposition (GSVD) of $\{A,L\}$. The process has a nested inner-outer iteration structure, where the inner iteration usually can not be computed exactly. In this paper, we study the inaccurately computed inner iterations of JBD by first investigating influence of computational error of the inner iteration on the outer iteration, and then proposing a reorthogonalized JBD (rJBD) process to keep orthogonality of a part of Lanczos vectors. An error analysis of the rJBD is carried out to build up connections with Lanczos bidiagonalizations. The results are then used to investigate convergence and accuracy of the rJBD based GSVD computation. It is shown that the accuracy of computed GSVD components depend on the computing accuracy of inner iterations and condition number of $(A^T,L^T)^T$ while the convergence rate is not affected very much. For practical JBD based GSVD computations, our results can provide a guideline for choosing a proper computing accuracy of inner iterations in order to obtain approximate GSVD components with a desired accuracy. Numerical experiments are made to confirm our theoretical results.

The approach to giving a proof-theoretic semantics for IMLL taken by Gheorghiu, Gu and Pym is an interesting adaptation of the work presented by Sandqvist in his 2015 paper for IPL. What is particularly interesting is how naturally the move to the substructural setting provided a semantics for the multiplicative fragment of intuitionistic linear logic. Whilst ultimately the authors of the semantics for IMLL used their foundations to provide a semantics for bunched implication logic, it begs the question, what of the rest of intuitionistic linear logic? In this paper, I present a semantics for intuitionistic linear logic, by first presenting a semantics for the multiplicative and additive fragment after which we focus solely on considering the modality "of-course", thus giving a proof-theoretic semantics for intuitionistic linear logic.

The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.

We build on the theory of ontology logs (ologs) created by Spivak and Kent, and define a notion of wiring diagrams. In this article, a wiring diagram is a finite directed labelled graph. The labels correspond to types in an olog; they can also be interpreted as readings of sensors in an autonomous system. As such, wiring diagrams can be used as a framework for an autonomous system to form abstract concepts. We show that the graphs underlying skeleton wiring diagrams form a category. This allows skeleton wiring diagrams to be compared and manipulated using techniques from both graph theory and category theory. We also extend the usual definition of graph edit distance to the case of wiring diagrams by using operations only available to wiring diagrams, leading to a metric on the set of all skeleton wiring diagrams. In the end, we give an extended example on calculating the distance between two concepts represented by wiring diagrams, and explain how to apply our framework to any application domain.

In this paper, we tackle a persistent numerical instability within the total Lagrangian smoothed particle hydrodynamics (TLSPH) solid dynamics. Specifically, we address the hourglass modes that may grow and eventually deteriorate the reliability of simulation, particularly in the scenarios characterized by large deformations. We propose a generalized essentially non-hourglass formulation based on volumetric-deviatoric stress decomposition, offering a general solution for elasticity, plasticity, anisotropy, and other material models. Comparing the standard SPH formulation with the original non-nested Laplacian operator applied in our previous work \cite{wu2023essentially} to handle the hourglass issues in standard elasticity, we introduce a correction for the discretization of shear stress that relies on the discrepancy produced by a tracing-back prediction of the initial inter-particle direction from the current deformation gradient. The present formulation, when applied to standard elastic materials, is able to recover the original Laplacian operator. Due to the dimensionless nature of the correction, this formulation handles complex material models in a very straightforward way. Furthermore, a magnitude limiter is introduced to minimize the correction in domains where the discrepancy is less pronounced. The present formulation is validated, with a single set of modeling parameters, through a series of benchmark cases, confirming good stability and accuracy across elastic, plastic, and anisotropic materials. To showcase its potential, the formulation is employed to simulate a complex problem involving viscous plastic Oobleck material, contacts, and very large deformation.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

In the rapidly evolving field of bioimaging, the integration and orchestration of Findable, Accessible, Interoperable, and Reusable (FAIR) image analysis workflows remains a challenge. We introduce BIOMERO, a bridge connecting OMERO, a renowned bioimaging data management platform, FAIR workflows and high-performance computing (HPC) environments. BIOMERO, featuring our opensource Python library "OMERO Slurm Client", facilitates seamless execution of FAIR workflows, particularly for large datasets from High Content or High Throughput Screening. BIOMERO empowers researchers by eliminating the need for specialized knowledge, enabling scalable image processing directly from OMERO. BIOMERO notably supports the sharing and utilization of FAIR workflows between OMERO, Cytomine/BIAFLOWS, and other bioimaging communities. BIOMERO will promote the widespread adoption of FAIR workflows, emphasizing reusability, across the realm of bioimaging research. Its user-friendly interface will empower users, including those without technical expertise, to seamlessly apply these workflows to their datasets, democratizing the utilization of AI by the broader research community.

Random probabilities are a key component to many nonparametric methods in Statistics and Machine Learning. To quantify comparisons between different laws of random probabilities several works are starting to use the elegant Wasserstein over Wasserstein distance. In this paper we prove that the infinite-dimensionality of the space of probabilities drastically deteriorates its sample complexity, which is slower than any polynomial rate in the sample size. We thus propose a new distance that preserves many desirable properties of the former while achieving a parametric rate of convergence. In particular, our distance 1) metrizes weak convergence; 2) can be estimated numerically through samples with low complexity; 3) can be bounded analytically from above and below. The main ingredient are integral probability metrics, which lead to the name hierarchical IPM.

We provide a nonasymptotic analysis of the convergence of the stochastic gradient Hamiltonian Monte Carlo (SGHMC) to a target measure in Wasserstein-2 distance without assuming log-concavity. Our analysis quantifies key theoretical properties of the SGHMC as a sampler under local conditions which significantly improves the findings of previous results. In particular, we prove that the Wasserstein-2 distance between the target and the law of the SGHMC is uniformly controlled by the step-size of the algorithm, therefore demonstrate that the SGHMC can provide high-precision results uniformly in the number of iterations. The analysis also allows us to obtain nonasymptotic bounds for nonconvex optimization problems under local conditions and implies that the SGHMC, when viewed as a nonconvex optimizer, converges to a global minimum with the best known rates. We apply our results to obtain nonasymptotic bounds for scalable Bayesian inference and nonasymptotic generalization bounds.

北京阿比特科技有限公司