We study the following generalization of the Hamiltonian cycle problem: Given integers $a,b$ and graph $G$, does there exist a closed walk in $G$ that visits every vertex at least $a$ times and at most $b$ times? Equivalently, does there exist a connected $[2a,2b]$ factor of $2b \cdot G$ with all degrees even? This problem is NP-hard for any constants $1 \leq a \leq b$. However, the graphs produced by known reductions have maximum degree growing linearly in $b$. The case $a = b = 1 $ -- i.e. Hamiltonicity -- remains NP-hard even in $3$-regular graphs; a natural question is whether this is true for other $a$, $b$. In this work, we study which $a, b$ permit polynomial time algorithms and which lead to NP-hardness in graphs with constrained degrees. We give tight characterizations for regular graphs and graphs of bounded max-degree, both directed and undirected.
In the field of Sequential Decision Making (SDM), two paradigms have historically vied for supremacy: Automated Planning (AP) and Reinforcement Learning (RL). In the spirit of reconciliation, this article reviews AP, RL and hybrid methods (e.g., novel learn to plan techniques) for solving Sequential Decision Processes (SDPs), focusing on their knowledge representation: symbolic, subsymbolic, or a combination. Additionally, it also covers methods for learning the SDP structure. Finally, we compare the advantages and drawbacks of the existing methods and conclude that neurosymbolic AI poses a promising approach for SDM, since it combines AP and RL with a hybrid knowledge representation.
Given integers $\Delta\ge 2$ and $t\ge 2\Delta$, suppose there is a graph of maximum degree $\Delta$ and a partition of its vertices into blocks of size at least $t$. By a seminal result of Haxell, there must be some independent set of the graph that is transversal to the blocks, a so-called independent transversal. We show that, if moreover $t\ge2\Delta+1$, then every independent transversal can be transformed within the space of independent transversals to any other through a sequence of one-vertex modifications, showing connectivity of the so-called reconfigurability graph of independent transversals. This is sharp in that for $t=2\Delta$ (and $\Delta\ge 2$) the connectivity conclusion can fail. In this case we show furthermore that in an essential sense it can only fail for the disjoint union of copies of the complete bipartite graph $K_{\Delta,\Delta}$. This constitutes a qualitative strengthening of Haxell's theorem.
We consider the problem of determining the manifold $n$-widths of Sobolev and Besov spaces with error measured in the $L_p$-norm. The manifold widths control how efficiently these spaces can be approximated by general non-linear parametric methods with the restriction that the parameter selection and parameterization maps must be continuous. Existing upper and lower bounds only match when the Sobolev or Besov smoothness index $q$ satisfies $q\leq p$ or $1 \leq p \leq 2$. We close this gap and obtain sharp lower bounds for all $1 \leq p,q \leq \infty$ for which a compact embedding holds. A key part of our analysis is to determine the exact value of the manifold widths of finite dimensional $\ell^M_q$-balls in the $\ell_p$-norm when $p\leq q$. Although this result is not new, we provide a new proof and apply it to lower bounding the manifold widths of Sobolev and Besov spaces. Our results show that the Bernstein widths, which are typically used to lower bound the manifold widths, decay asymptotically faster than the manifold widths in many cases.
We are interested in the following validation problem for computational reductions: for algorithmic problems $P$ and $P^\star$, is a given candidate reduction indeed a reduction from $P$ to $P^\star$? Unsurprisingly, this problem is undecidable even for very restricted classes of reductions. This leads to the question: Is there a natural, expressive class of reductions for which the validation problem can be attacked algorithmically? We answer this question positively by introducing an easy-to-use graphical specification mechanism for computational reductions, called cookbook reductions. We show that cookbook reductions are sufficiently expressive to cover many classical graph reductions and expressive enough so that SAT remains NP-complete (in the presence of a linear order). Surprisingly, the validation problem is decidable for natural and expressive subclasses of cookbook reductions.
Tree ensemble methods provide promising predictions with models difficult to interpret. Recent introduction of Shapley values for individualized feature contributions, accompanied with several fast computing algorithms for predicted values, shows intriguing results. However, individualizing coefficients of determination, aka $R^2$, for each feature is challenged by the underlying quadratic losses, although these coefficients allow us to comparatively assess single feature's contribution to tree ensembles. Here we propose an efficient algorithm, Q-SHAP, that reduces the computational complexity to polynomial time when calculating Shapley values related to quadratic losses. Our extensive simulation studies demonstrate that this approach not only enhances computational efficiency but also improves estimation accuracy of feature-specific coefficients of determination.
We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads. These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.
The Orthogonal Polygon Covering with Squares (OPCS) problem takes as input an orthogonal polygon $P$ without holes with $n$ vertices, where vertices have integral coordinates. The aim is to find a minimum number of axis-parallel, possibly overlapping squares which lie completely inside $P$, such that their union covers the entire region inside $P$. Aupperle et. al~\cite{aupperle1988covering} provide an $\mathcal O(N^{1.5})$-time algorithm to solve OPCS for orthogonal polygons without holes, where $N$ is the number of integral lattice points lying in the interior or on the boundary of $P$. Designing algorithms for OPCS with a running time polynomial in $n$ (the number of vertices of $P$) was discussed as an open question in \cite{aupperle1988covering}, since $N$ can be exponentially larger than $n$. In this paper we design a polynomial-time exact algorithm for OPCS with a running time of $\mathcal O(n^{14})$. We also consider the following structural parameterized version of the problem. A knob in an orthogonal polygon is a polygon edge whose both endpoints are convex polygon vertices. Given an input orthogonal polygon with $n$ vertices and $k$ knobs, we design an algorithm for OPCS with running time $\mathcal O(n^2 + k^{14} \cdot n)$. In \cite{aupperle1988covering}, the Orthogonal Polygon with Holes Covering with Squares (OPCSH) problem is also studied where orthogonal polygon could have holes, and the objective is to find a minimum square covering of the input polygon. This is shown to be NP-complete. We think there is an error in the existing proof in \cite{aupperle1988covering}, where a reduction from Planar 3-CNF is shown. We fix this error in the proof with an alternate construction of one of the gadgets used in the reduction, hence completing the proof of NP-completeness of OPCSH.
Let $X$ be an $n$-element point set in the $k$-dimensional unit cube $[0,1]^k$ where $k \geq 2$. According to an old result of Bollob\'as and Meir (1992), there exists a cycle (tour) $x_1, x_2, \ldots, x_n$ through the $n$ points, such that $\left(\sum_{i=1}^n |x_i - x_{i+1}|^k \right)^{1/k} \leq c_k$, where $|x-y|$ is the Euclidean distance between $x$ and $y$, and $c_k$ is an absolute constant that depends only on $k$, where $x_{n+1} \equiv x_1$. From the other direction, for every $k \geq 2$ and $n \geq 2$, there exist $n$ points in $[0,1]^k$, such that their shortest tour satisfies $\left(\sum_{i=1}^n |x_i - x_{i+1}|^k \right)^{1/k} = 2^{1/k} \cdot \sqrt{k}$. For the plane, the best constant is $c_2=2$ and this is the only exact value known. Bollob{\'a}s and Meir showed that one can take $c_k = 9 \left(\frac23 \right)^{1/k} \cdot \sqrt{k}$ for every $k \geq 3$ and conjectured that the best constant is $c_k = 2^{1/k} \cdot \sqrt{k}$, for every $k \geq 2$. Here we significantly improve the upper bound and show that one can take $c_k = 3 \sqrt5 \left(\frac23 \right)^{1/k} \cdot \sqrt{k}$ or $c_k = 2.91 \sqrt{k} \ (1+o_k(1))$. Our bounds are constructive. We also show that $c_3 \geq 2^{7/6}$, which disproves the conjecture for $k=3$. Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollob\'as--Meir conjecture is proposed.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.