Deep neural network can easily overfit to even noisy labels due to its high capacity, which degrades the generalization performance of a model. To overcome this issue, we propose a new approach for learning from noisy labels (LNL) via post-training, which can significantly improve the generalization performance of any pre-trained model on noisy label data. To this end, we rather exploit the overfitting property of a trained model to identify mislabeled samples. Specifically, our post-training approach gradually removes samples with high influence on the decision boundary and refines the decision boundary to improve generalization performance. Our post-training approach creates great synergies when combined with the existing LNL methods. Experimental results on various real-world and synthetic benchmark datasets demonstrate the validity of our approach in diverse realistic scenarios.
Algorithmic fairness is of utmost societal importance, yet the current trend in large-scale machine learning models requires training with massive datasets that are typically biased. In this context, pre-processing methods that focus on modeling and correcting bias in the data emerge as valuable approaches. In this paper, we propose FairShap, a novel pre-processing (re-weighting) method for fair algorithmic decision-making through data valuation by means of Shapley Values. Our approach is model agnostic and easily interpretable, as it measures the contribution of each training data point to a predefined fairness metric. We empirically validate FairShap on several state-of-the-art datasets of different nature, with a variety of training scenarios and models and show how it outperforms other methods, yielding fairer models with higher or similar levels of accuracy. We also illustrate FairShap's interpretability by means of histograms and latent space visualizations. We believe that this work represents a promising direction in interpretable and model-agnostic approaches to algorithmic fairness that yield competitive accuracy even when only biased datasets are available.
With the emergence of more powerful large language models (LLMs), such as ChatGPT and GPT-4, in-context learning (ICL) has gained significant prominence in leveraging these models for specific tasks by utilizing data-label pairs as precondition prompts. While incorporating demonstrations can greatly enhance the performance of LLMs across various tasks, it may introduce a new security concern: attackers can manipulate only the demonstrations without changing the input to perform an attack. In this paper, we investigate the security concern of ICL from an adversarial perspective, focusing on the impact of demonstrations. We propose an ICL attack based on TextAttack, which aims to only manipulate the demonstration without changing the input to mislead the models. Our results demonstrate that as the number of demonstrations increases, the robustness of in-context learning would decreases. Furthermore, we also observe that adversarially attacked demonstrations exhibit transferability to diverse input examples. These findings emphasize the critical security risks associated with ICL and underscore the necessity for extensive research on the robustness of ICL, particularly given its increasing significance in the advancement of LLMs.
While large language models (LLMs) bring not only performance but also complexity, recent work has started to turn LLMs into data generators rather than task inferencers, where another affordable task model is trained for efficient deployment and inference. However, such an approach has primarily been applied to natural language tasks and has not yet been explored for symbolic language tasks with complex structured outputs (e.g., semantic parsing and code generation). In this paper, we propose SymGen which utilizes LLMs for generating various annotation-expensive symbolic language data. SymGen consists of an informative prompt to steer generation and an agreement-based verifier to improve data correctness. We conduct extensive experiments on six symbolic language tasks across various settings. Compared with the LLMs, we demonstrate the 1\%-sized task model can achieve comparable or better performance, largely cutting inference and deployment costs. We also show that generated data with only a few human demonstrations can be as effective as over 10 times the amount of human-annotated data when training the task model, saving a considerable amount of annotation effort. SymGen sheds new light on data generation for complex tasks, and we release the code at \href{//github.com/HKUNLP/SymGen}{//github.com/HKUNLP/SymGen}.
Suppose we want to train text prediction models in email clients or word processors. The models must preserve the privacy of user data and adhere to a specific fixed size to meet memory and inference time requirements. We introduce a generic framework to solve this problem. Specifically, we are given a public dataset $D_\text{pub}$ and a private dataset $D_\text{priv}$ corresponding to a downstream task $T$. How should we pre-train a fixed-size model $M$ on $D_\text{pub}$ and fine-tune it on $D_\text{priv}$ such that performance of $M$ with respect to $T$ is maximized and $M$ satisfies differential privacy with respect to $D_\text{priv}$? We show that pre-training on a {\em subset} of dataset $D_\text{pub}$ that brings the public distribution closer to the private distribution is a crucial ingredient to maximize the transfer learning abilities of $M$ after pre-training, especially in the regimes where model sizes are relatively small. Besides performance improvements, our framework also shows that with careful pre-training and private fine-tuning, {\em smaller models} can match the performance of much larger models, highlighting the promise of differentially private training as a tool for model compression and efficiency.
Training an ensemble of diverse sub-models has been empirically demonstrated as an effective strategy for improving the adversarial robustness of deep neural networks. However, current ensemble training methods for image recognition typically encode image labels using one-hot vectors, which overlook dependency relationships between the labels. In this paper, we propose a novel adversarial en-semble training approach that jointly learns the label dependencies and member models. Our approach adaptively exploits the learned label dependencies to pro-mote diversity among the member models. We evaluate our approach on widely used datasets including MNIST, FashionMNIST, and CIFAR-10, and show that it achieves superior robustness against black-box attacks compared to state-of-the-art methods. Our code is available at //github.com/ZJLAB-AMMI/LSD.
Neural network training is inherently sequential where the layers finish the forward propagation in succession, followed by the calculation and back-propagation of gradients (based on a loss function) starting from the last layer. The sequential computations significantly slow down neural network training, especially the deeper ones. Prediction has been successfully used in many areas of computer architecture to speed up sequential processing. Therefore, we propose ADA-GP, that uses gradient prediction adaptively to speed up deep neural network (DNN) training while maintaining accuracy. ADA-GP works by incorporating a small neural network to predict gradients for different layers of a DNN model. ADA-GP uses a novel tensor reorganization to make it feasible to predict a large number of gradients. ADA-GP alternates between DNN training using backpropagated gradients and DNN training using predicted gradients. ADA-GP adaptively adjusts when and for how long gradient prediction is used to strike a balance between accuracy and performance. Last but not least, we provide a detailed hardware extension in a typical DNN accelerator to realize the speed up potential from gradient prediction. Our extensive experiments with fourteen DNN models show that ADA-GP can achieve an average speed up of 1.47x with similar or even higher accuracy than the baseline models. Moreover, it consumes, on average, 34% less energy due to reduced off-chip memory accesses compared to the baseline hardware accelerator.
Modeling of real-world biological multi-agents is a fundamental problem in various scientific and engineering fields. Reinforcement learning (RL) is a powerful framework to generate flexible and diverse behaviors in cyberspace; however, when modeling real-world biological multi-agents, there is a domain gap between behaviors in the source (i.e., real-world data) and the target (i.e., cyberspace for RL), and the source environment parameters are usually unknown. In this paper, we propose a method for adaptive action supervision in RL from real-world demonstrations in multi-agent scenarios. We adopt an approach that combines RL and supervised learning by selecting actions of demonstrations in RL based on the minimum distance of dynamic time warping for utilizing the information of the unknown source dynamics. This approach can be easily applied to many existing neural network architectures and provide us with an RL model balanced between reproducibility as imitation and generalization ability to obtain rewards in cyberspace. In the experiments, using chase-and-escape and football tasks with the different dynamics between the unknown source and target environments, we show that our approach achieved a balance between the reproducibility and the generalization ability compared with the baselines. In particular, we used the tracking data of professional football players as expert demonstrations in football and show successful performances despite the larger gap between behaviors in the source and target environments than the chase-and-escape task.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.