亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the concept of memoryless concretization relation (MCR) to describe abstraction within the context of controller synthesis. This relation is a specific instance of alternating simulation relation (ASR), where it is possible to simplify the controller architecture. In the case of ASR, the concretized controller needs to simulate the concurrent evolution of two systems, the original and abstract systems, while for MCR, the designed controllers only need knowledge of the current concrete state. We demonstrate that the distinction between ASR and MCR becomes significant only when a non-deterministic quantizer is involved, such as in cases where the state space discretization consists of overlapping cells. We also show that any abstraction of a system that alternatingly simulates a system can be completed to satisfy MCR at the expense of increasing the non-determinism in the abstraction. We clarify the difference between the MCR and the feedback refinement relation (FRR), showing in particular that the former allows for non-constant controllers within cells. This provides greater flexibility in constructing a practical abstraction, for instance, by reducing non-determinism in the abstraction. Finally, we prove that this relation is not only sufficient, but also necessary, for ensuring the above properties.

相關內容

This thesis is a corpus-based, quantitative, and typological analysis of the functions of Early Slavic participle constructions and their finite competitors ($jegda$-'when'-clauses). The first part leverages detailed linguistic annotation on Early Slavic corpora at the morphosyntactic, dependency, information-structural, and lexical levels to obtain indirect evidence for different potential functions of participle clauses and their main finite competitor and understand the roles of compositionality and default discourse reasoning as explanations for the distribution of participle constructions and $jegda$-clauses in the corpus. The second part uses massively parallel data to analyze typological variation in how languages express the semantic space of English $when$, whose scope encompasses that of Early Slavic participle constructions and $jegda$-clauses. Probabilistic semantic maps are generated and statistical methods (including Kriging, Gaussian Mixture Modelling, precision and recall analysis) are used to induce cross-linguistically salient dimensions from the parallel corpus and to study conceptual variation within the semantic space of the hypothetical concept WHEN.

Distance correlation is a novel class of multivariate dependence measure, taking positive values between 0 and 1, and applicable to random vectors of arbitrary dimensions, not necessarily equal. It offers several advantages over the well-known Pearson correlation coefficient, the most important is that distance correlation equals zero if and only if the random vectors are independent. There are two different estimators of the distance correlation available in the literature. The first one, proposed by Sz\'ekely et al. (2007), is based on an asymptotically unbiased estimator of the distance covariance which turns out to be a V-statistic. The second one builds on an unbiased estimator of the distance covariance proposed in Sz\'ekely et al. (2014), proved to be an U-statistic by Sz\'ekely and Huo (2016). This study evaluates their efficiency (mean squared error) and compares computational times for both methods under different dependence structures. Under conditions of independence or near-independence, the V-estimates are biased, while the U-estimator frequently cannot be computed due to negative values. To address this challenge, a convex linear combination of the former estimators is proposed and studied, yielding good results regardless of the level of dependence.

A change point detection (CPD) framework assisted by a predictive machine learning model called "Predict and Compare" is introduced and characterised in relation to other state-of-the-art online CPD routines which it outperforms in terms of false positive rate and out-of-control average run length. The method's focus is on improving standard methods from sequential analysis such as the CUSUM rule in terms of these quality measures. This is achieved by replacing typically used trend estimation functionals such as the running mean with more sophisticated predictive models (Predict step), and comparing their prognosis with actual data (Compare step). The two models used in the Predict step are the ARIMA model and the LSTM recursive neural network. However, the framework is formulated in general terms, so as to allow the use of other prediction or comparison methods than those tested here. The power of the method is demonstrated in a tribological case study in which change points separating the run-in, steady-state, and divergent wear phases are detected in the regime of very few false positives.

Matching on a low dimensional vector of scalar covariates consists of constructing groups of individuals in which each individual in a group is within a pre-specified distance from an individual in another group. However, matching in high dimensional spaces is more challenging because the distance can be sensitive to implementation details, caliper width, and measurement error of observations. To partially address these problems, we propose to use extensive sensitivity analyses and identify the main sources of variation and bias. We illustrate these concepts by examining the racial disparity in all-cause mortality in the US using the National Health and Nutrition Examination Survey (NHANES 2003-2006). In particular, we match African Americans to Caucasian Americans on age, gender, BMI and objectively measured physical activity (PA). PA is measured every minute using accelerometers for up to seven days and then transformed into an empirical distribution of all of the minute-level observations. The Wasserstein metric is used as the measure of distance between these participant-specific distributions.

We consider the problem of finite-time identification of linear dynamical systems from $T$ samples of a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm that depend on the local size of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of these results, we instantiate them for four examples, namely when (i) $A^*$ is sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball; (ii) $\mathcal{K}$ is a subspace; (iii) $\mathcal{K}$ consists of matrices each of which is formed by sampling a bivariate convex function on a uniform $n \times n$ grid (convex regression); (iv) $\mathcal{K}$ consists of matrices each row of which is formed by uniform sampling (with step size $1/T$) of a univariate Lipschitz function. In all these situations, we show that $A^*$ can be reliably estimated for values of $T$ much smaller than what is needed for the unconstrained setting.

We generalize McDiarmid's inequality for functions with bounded differences on a high probability set, using an extension argument. Those functions concentrate around their conditional expectations. We further extend the results to concentration in general metric spaces.

A fundamental problem associated with the task of network reconstruction from dynamical or behavioral data consists in determining the most appropriate model complexity in a manner that prevents overfitting, and produces an inferred network with a statistically justifiable number of edges. The status quo in this context is based on $L_{1}$ regularization combined with cross-validation. As we demonstrate, besides its high computational cost, this commonplace approach unnecessarily ties the promotion of sparsity with weight "shrinkage". This combination forces a trade-off between the bias introduced by shrinkage and the network sparsity, which often results in substantial overfitting even after cross-validation. In this work, we propose an alternative nonparametric regularization scheme based on hierarchical Bayesian inference and weight quantization, which does not rely on weight shrinkage to promote sparsity. Our approach follows the minimum description length (MDL) principle, and uncovers the weight distribution that allows for the most compression of the data, thus avoiding overfitting without requiring cross-validation. The latter property renders our approach substantially faster to employ, as it requires a single fit to the complete data. As a result, we have a principled and efficient inference scheme that can be used with a large variety of generative models, without requiring the number of edges to be known in advance. We also demonstrate that our scheme yields systematically increased accuracy in the reconstruction of both artificial and empirical networks. We highlight the use of our method with the reconstruction of interaction networks between microbial communities from large-scale abundance samples involving in the order of $10^{4}$ to $10^{5}$ species, and demonstrate how the inferred model can be used to predict the outcome of interventions in the system.

Spectral estimation is a fundamental task in signal processing. Recent algorithms in quantum phase estimation are concerned with the large noise, large frequency regime of the spectral estimation problem. The recent work in Ding-Epperly-Lin-Zhang shows that the ESPRIT algorithm exhibits superconvergence behavior for the spike locations in terms of the maximum frequency. This note provides a perturbative analysis to explain this behavior. It also extends the discussion to the case where the noise grows with the sampling frequency.

We develop an inferential toolkit for analyzing object-valued responses, which correspond to data situated in general metric spaces, paired with Euclidean predictors within the conformal framework. To this end we introduce conditional profile average transport costs, where we compare distance profiles that correspond to one-dimensional distributions of probability mass falling into balls of increasing radius through the optimal transport cost when moving from one distance profile to another. The average transport cost to transport a given distance profile to all others is crucial for statistical inference in metric spaces and underpins the proposed conditional profile scores. A key feature of the proposed approach is to utilize the distribution of conditional profile average transport costs as conformity score for general metric space-valued responses, which facilitates the construction of prediction sets by the split conformal algorithm. We derive the uniform convergence rate of the proposed conformity score estimators and establish asymptotic conditional validity for the prediction sets. The finite sample performance for synthetic data in various metric spaces demonstrates that the proposed conditional profile score outperforms existing methods in terms of both coverage level and size of the resulting prediction sets, even in the special case of scalar and thus Euclidean responses. We also demonstrate the practical utility of conditional profile scores for network data from New York taxi trips and for compositional data reflecting energy sourcing of U.S. states.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

北京阿比特科技有限公司