亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new annotation scheme to classify different types of clauses in Terms-and-Conditions contracts with the ultimate goal of supporting legal experts to quickly identify and assess problematic issues in this type of legal documents. To this end, we built a small corpus of Terms-and-Conditions contracts and finalized an annotation scheme of 14 categories, eventually reaching an inter-annotator agreement of 0.92. Then, for 11 of them, we experimented with binary classification tasks using few-shot prompting with a multilingual T5 and two fine-tuned versions of two BERT-based LLMs for Italian. Our experiments showed the feasibility of automatic classification of our categories by reaching accuracies ranging from .79 to .95 on validation tasks.

相關內容

Robust and accurate localization in challenging environments is becoming crucial for SLAM. In this paper, we propose a unique sensor configuration for precise and robust odometry by integrating chip radar and a legged robot. Specifically, we introduce a tightly coupled radar-leg odometry algorithm for complementary drift correction. Adopting the 4-DoF optimization and decoupled RANSAC to mmWave chip radar significantly enhances radar odometry beyond the existing method, especially z-directional even when using a single radar. For the leg odometry, we employ rolling contact modeling-aided forward kinematics, accommodating scenarios with the potential possibility of contact drift and radar failure. We evaluate our method by comparing it with other chip radar odometry algorithms using real-world datasets with diverse environments while the datasets will be released for the robotics community. //github.com/SangwooJung98/Co-RaL-Dataset

In this paper, we consider a multi-stage dynamic assortment optimization problem with multi-nomial choice modeling (MNL) under resource knapsack constraints. Given the current resource inventory levels, the retailer makes an assortment decision at each period, and the goal of the retailer is to maximize the total profit from purchases. With the exact optimal dynamic assortment solution being computationally intractable, a practical strategy is to adopt the re-solving technique that periodically re-optimizes deterministic linear programs (LP) arising from fluid approximation. However, the fractional structure of MNL makes the fluid approximation in assortment optimization highly non-linear, which brings new technical challenges. To address this challenge, we propose a new epoch-based re-solving algorithm that effectively transforms the denominator of the objective into the constraint. Theoretically, we prove that the regret (i.e., the gap between the resolving policy and the optimal objective of the fluid approximation) scales logarithmically with the length of time horizon and resource capacities.

In this paper, we initiate the computational problem of jointly designing information and contracts. We consider three possible classes of contracts with decreasing flexibility and increasing simplicity: ambiguous contracts, menus of explicit contracts and explicit single contract. Ambiguous contracts allow the principal to conceal the applied payment schemes through a contract that depends on the unknown state of nature, while explicit contracts reveal the contract prior to the agent's decision. Our results show a trade-off between the simplicity of the contracts and the computational complexity of the joint design. Indeed, we show that an approximately-optimal mechanism with ambiguous contracts can be computed in polynomial time. However, they are convoluted mechanisms and not well-suited for some real-world scenarios. Conversely, explicit menus of contracts and single contracts are simpler mechanisms, but they cannot be computed efficiently. In particular, we show that computing the optimal mechanism with explicit menus of contracts and single contracts is APX-Hard. We also characterize the structure of optimal mechanisms. Interestingly, direct mechanisms are optimal for both the most flexible ambiguous contracts and the least flexible explicit single contract, but they are suboptimal for that with menus of contracts. Finally, motivated by our hardness results, we turn our attention to menus of linear contracts and single linear contracts. We show that both the problem of computing the optimal mechanism with an explicit menu of linear contracts and an explicit single linear contract admits an FPTAS.

This paper proposes a pipeline for quantitatively evaluating interactive Large Language Models (LLMs) using publicly available datasets. We carry out an extensive technical evaluation of LLMs using Big-Vul covering four different common software vulnerability tasks. This evaluation assesses the multi-tasking capabilities of LLMs based on this dataset. We find that the existing state-of-the-art approaches and pre-trained Language Models (LMs) are generally superior to LLMs in software vulnerability detection. However, in software vulnerability assessment and location, certain LLMs (e.g., CodeLlama and WizardCoder) have demonstrated superior performance compared to pre-trained LMs, and providing more contextual information can enhance the vulnerability assessment capabilities of LLMs. Moreover, LLMs exhibit strong vulnerability description capabilities, but their tendency to produce excessive output significantly weakens their performance compared to pre-trained LMs. Overall, though LLMs perform well in some aspects, they still need improvement in understanding the subtle differences in code vulnerabilities and the ability to describe vulnerabilities to fully realize their potential. Our evaluation pipeline provides valuable insights into the capabilities of LLMs in handling software vulnerabilities.

The existence of $\textsf{EFX}$ allocations stands as one of the main challenges in discrete fair division. In this paper, we present a collection of symmetrical results on the existence of $\textsf{EFX}$ notion and its approximate variations. These results pertain to two seemingly distinct valuation settings: the restricted additive valuations and $(p,q)$-bounded valuations recently introduced by Christodoulou \textit{et al.} \cite{christodoulou2023fair}. In a $(p,q)$-bonuded instance, each good holds relevance (i.e., has a non-zero marginal value) for at most $p$ agents, and any pair of agents share at most $q$ common relevant goods. The only known guarantees on $(p,q)$-bounded valuations is that $(2,1)$-bounded instances always admit $\textsf{EFX}$ allocations (EC'22) \cite{christodoulou2023fair}. Here we show that instances with $(\infty,1)$-bounded valuations always admit $\textsf{EF2X}$ allocations, and $\textsf{EFX}$ allocations with at most $\lfloor {n}/{2} \rfloor - 1$ discarded goods. These results mirror the existing results for the restricted additive setting \cite{akrami2023efx}. Moreover, we present $({\sqrt{2}}/{2})-\textsf{EFX}$ allocation algorithms for both the restricted additive and $(\infty,1)$-bounded settings. The symmetry of these results suggests that these valuations exhibit symmetric structures. Building on this observation, we conjectured that the $(2,\infty)$-bounded and restricted additive setting might admit $\textsf{EFX}$ guarantee. Intriguingly, our investigation confirms this conjecture. We propose a rather complex $\textsf{EFX}$ allocation algorithm for restricted additive valuations when $p=2$ and $q=\infty$.

This paper explores speculative speech recognition (SSR), where we empower conventional automatic speech recognition (ASR) with speculation capabilities, allowing the recognizer to run ahead of audio. We introduce a metric for measuring SSR performance and we propose a model which does SSR by combining a RNN-Transducer-based ASR system with an audio-prefixed language model (LM). The ASR system transcribes ongoing audio and feeds the resulting transcripts, along with an audio-dependent prefix, to the LM, which speculates likely completions for the transcriptions. We experiment with a variety of ASR datasets on which show the efficacy our method and the feasibility of SSR as a method of reducing ASR latency.

Allocation games are zero-sum games that model the distribution of resources among multiple agents. In this paper, we explore the interplay between an \textit{subjective identity} and its impact on notions of fairness in allocation. The sense of identity in agents is known to lead to responsible decision-making in non-cooperative, non-zero-sum games like Prisoners' Dilemma, and is a desirable feature to add into agent models. However, when it comes to allocation, the sense of identity can be shown to exacerbate inequities in allocation, giving no rational incentive for agents to act fairly towards one another. This lead us to introduce a sense of fairness as an innate characteristic of autonomous agency. For this, we implement the well-known Ultimatum Game between two agents, where their sense of identity association and their sense of fairness are both varied. We study the points at which agents find it no longer rational to identify with the other agent, and uphold their sense of fairness, and vice versa. Such a study also helps us discern the subtle difference between responsibility and fairness when it comes to autonomous agency.

In this paper, we propose Conceptual Codebook Learning (CoCoLe), a novel fine-tuning method for vision-language models (VLMs) to address the challenge of improving the generalization capability of VLMs while fine-tuning them on downstream tasks in a few-shot setting. We recognize that visual concepts, such as textures, shapes, and colors are naturally transferable across domains and play a crucial role in generalization tasks. Motivated by this interesting finding, we learn a conceptual codebook consisting of visual concepts as keys and conceptual prompts as values, which serves as a link between the image encoder's outputs and the text encoder's inputs. Specifically, for a given image, we leverage the codebook to identify the most relevant conceptual prompts associated with the class embeddings to perform the classification. Additionally, we incorporate a handcrafted concept cache as a regularization to alleviate the overfitting issues in low-shot scenarios. We observe that this conceptual codebook learning method is able to achieve enhanced alignment between visual and linguistic modalities. Extensive experimental results demonstrate that our CoCoLe method remarkably outperforms the existing state-of-the-art methods across various evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization tasks. Detailed ablation studies further confirm the efficacy of each component in CoCoLe.

In this paper, we introduce a subspace-inspired Low-Rank Adaptation (LoRA) method, which is computationally efficient, easy to implement, and readily applicable to large language, multimodal, and diffusion models. Initially, we equivalently decompose the weights of LoRA into two subspaces, and find that simply mixing them can enhance performance. To study such a phenomenon, we revisit it through a fine-grained subspace lens, showing that such modification is equivalent to employing a fixed mixer to fuse the subspaces. To be more flexible, we jointly learn the mixer with the original LoRA weights, and term the method Mixture-of-Subspaces LoRA (MoSLoRA). MoSLoRA consistently outperforms LoRA on tasks in different modalities, including commonsense reasoning, visual instruction tuning, and subject-driven text-to-image generation, demonstrating its effectiveness and robustness. Codes are available at //github.com/wutaiqiang/MoSLoRA.

In this paper, we explore a novel point representation for 3D occupancy prediction from multi-view images, which is named Occupancy as Set of Points. Existing camera-based methods tend to exploit dense volume-based representation to predict the occupancy of the whole scene, making it hard to focus on the special areas or areas out of the perception range. In comparison, we present the Points of Interest (PoIs) to represent the scene and propose OSP, a novel framework for point-based 3D occupancy prediction. Owing to the inherent flexibility of the point-based representation, OSP achieves strong performance compared with existing methods and excels in terms of training and inference adaptability. It extends beyond traditional perception boundaries and can be seamlessly integrated with volume-based methods to significantly enhance their effectiveness. Experiments on the Occ3D nuScenes occupancy benchmark show that OSP has strong performance and flexibility. Code and models are available at \url{//github.com/hustvl/osp}.

北京阿比特科技有限公司