Shape constraints such as positive semi-definiteness (PSD) for matrices or convexity for functions play a central role in many applications in machine learning and sciences, including metric learning, optimal transport, and economics. Yet, very few function models exist that enforce PSD-ness or convexity with good empirical performance and theoretical guarantees. In this paper, we introduce a kernel sum-of-squares model for functions that take values in the PSD cone, which extends kernel sums-of-squares models that were recently proposed to encode non-negative scalar functions. We provide a representer theorem for this class of PSD functions, show that it constitutes a universal approximator of PSD functions, and derive eigenvalue bounds in the case of subsampled equality constraints. We then apply our results to modeling convex functions, by enforcing a kernel sum-of-squares representation of their Hessian, and show that any smooth and strongly convex function may be thus represented. Finally, we illustrate our methods on a PSD matrix-valued regression task, and on scalar-valued convex regression.
Combinatorial optimization lies at the core of many real-world problems. Especially since the rise of graph neural networks (GNNs), the deep learning community has been developing solvers that derive solutions to NP-hard problems by learning the problem-specific solution structure. However, reproducing the results of these publications proves to be difficult. We make three contributions. First, we present an open-source benchmark suite for the NP-hard Maximum Independent Set problem, in both its weighted and unweighted variants. The suite offers a unified interface to various state-of-the-art traditional and machine learning-based solvers. Second, using our benchmark suite, we conduct an in-depth analysis of the popular guided tree search algorithm by Li et al. [NeurIPS 2018], testing various configurations on small and large synthetic and real-world graphs. By re-implementing their algorithm with a focus on code quality and extensibility, we show that the graph convolution network used in the tree search does not learn a meaningful representation of the solution structure, and can in fact be replaced by random values. Instead, the tree search relies on algorithmic techniques like graph kernelization to find good solutions. Thus, the results from the original publication are not reproducible. Third, we extend the analysis to compare the tree search implementations to other solvers, showing that the classical algorithmic solvers often are faster, while providing solutions of similar quality. Additionally, we analyze a recent solver based on reinforcement learning and observe that for this solver, the GNN is responsible for the competitive solution quality.
We introduce Stochastic Asymptotical Regularization (SAR) methods for the uncertainty quantification of the stable approximate solution of ill-posed linear-operator equations, which are deterministic models for numerous inverse problems in science and engineering. We prove the regularizing properties of SAR with regard to mean-square convergence. We also show that SAR is an optimal-order regularization method for linear ill-posed problems provided that the terminating time of SAR is chosen according to the smoothness of the solution. This result is proven for both a priori and a posteriori stopping rules under general range-type source conditions. Furthermore, some converse results of SAR are verified. Two iterative schemes are developed for the numerical realization of SAR, and the convergence analyses of these two numerical schemes are also provided. A toy example and a real-world problem of biosensor tomography are studied to show the accuracy and the advantages of SAR: compared with the conventional deterministic regularization approaches for deterministic inverse problems, SAR can provide the uncertainty quantification of the quantity of interest, which can in turn be used to reveal and explicate the hidden information about real-world problems, usually obscured by the incomplete mathematical modeling and the ascendence of complex-structured noise.
Finding a \emph{single} best solution is the most common objective in combinatorial optimization problems. However, such a single solution may not be applicable to real-world problems as objective functions and constraints are only "approximately" formulated for original real-world problems. To solve this issue, finding \emph{multiple} solutions is a natural direction, and diversity of solutions is an important concept in this context. Unfortunately, finding diverse solutions is much harder than finding a single solution. To cope with difficulty, we investigate the approximability of finding diverse solutions. As a main result, we propose a framework to design approximation algorithms for finding diverse solutions, which yields several outcomes including constant-factor approximation algorithms for finding diverse matchings in graphs and diverse common bases in two matroids and PTASes for finding diverse minimum cuts and interval schedulings.
This paper addresses theory and applications of $\ell_p$-based Laplacian regularization in semi-supervised learning. The graph $p$-Laplacian for $p>2$ has been proposed recently as a replacement for the standard ($p=2$) graph Laplacian in semi-supervised learning problems with very few labels, where Laplacian learning is degenerate. In the first part of the paper we prove new discrete to continuum convergence results for $p$-Laplace problems on $k$-nearest neighbor ($k$-NN) graphs, which are more commonly used in practice than random geometric graphs. Our analysis shows that, on $k$-NN graphs, the $p$-Laplacian retains information about the data distribution as $p\to \infty$ and Lipschitz learning ($p=\infty$) is sensitive to the data distribution. This situation can be contrasted with random geometric graphs, where the $p$-Laplacian forgets the data distribution as $p\to \infty$. We also present a general framework for proving discrete to continuum convergence results in graph-based learning that only requires pointwise consistency and monotonicity. In the second part of the paper, we develop fast algorithms for solving the variational and game-theoretic $p$-Laplace equations on weighted graphs for $p>2$. We present several efficient and scalable algorithms for both formulations, and present numerical results on synthetic data indicating their convergence properties. Finally, we conduct extensive numerical experiments on the MNIST, FashionMNIST and EMNIST datasets that illustrate the effectiveness of the $p$-Laplacian formulation for semi-supervised learning with few labels. In particular, we find that Lipschitz learning ($p=\infty$) performs well with very few labels on $k$-NN graphs, which experimentally validates our theoretical findings that Lipschitz learning retains information about the data distribution (the unlabeled data) on $k$-NN graphs.
This paper presents a constrained policy gradient algorithm. We introduce constraints for safe learning with the following steps. First, learning is slowed down (lazy learning) so that the episodic policy change can be computed with the help of the policy gradient theorem and the neural tangent kernel. Then, this enables us the evaluation of the policy at arbitrary states too. In the same spirit, learning can be guided, ensuring safety via augmenting episode batches with states where the desired action probabilities are prescribed. Finally, exogenous discounted sum of future rewards (returns) can be computed at these specific state-action pairs such that the policy network satisfies constraints. Computing the returns is based on solving a system of linear equations (equality constraints) or a constrained quadratic program (inequality constraints, regional constraints). Simulation results suggest that adding constraints (external information) to the learning can improve learning in terms of speed and transparency reasonably if constraints are appropriately selected. The efficiency of the constrained learning was demonstrated with a shallow and wide ReLU network in the Cartpole and Lunar Lander OpenAI gym environments. The main novelty of the paper is giving a practical use of the neural tangent kernel in reinforcement learning.
Leveraging biased click data for optimizing learning to rank systems has been a popular approach in information retrieval. Because click data is often noisy and biased, a variety of methods have been proposed to construct unbiased learning to rank (ULTR) algorithms for the learning of unbiased ranking models. Among them, automatic unbiased learning to rank (AutoULTR) algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice. Despite their differences in theories and algorithm design, existing studies on ULTR usually use uni-variate ranking functions to score each document or result independently. On the other hand, recent advances in context-aware learning-to-rank models have shown that multivariate scoring functions, which read multiple documents together and predict their ranking scores jointly, are more powerful than uni-variate ranking functions in ranking tasks with human-annotated relevance labels. Whether such superior performance would hold in ULTR with noisy data, however, is mostly unknown. In this paper, we investigate existing multivariate scoring functions and AutoULTR algorithms in theory and prove that permutation invariance is a crucial factor that determines whether a context-aware learning-to-rank model could be applied to existing AutoULTR framework. Our experiments with synthetic clicks on two large-scale benchmark datasets show that AutoULTR models with permutation-invariant multivariate scoring functions significantly outperform those with uni-variate scoring functions and permutation-variant multivariate scoring functions.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Real-world applications often combine learning and optimization problems on graphs. For instance, our objective may be to cluster the graph in order to detect meaningful communities (or solve other common graph optimization problems such as facility location, maxcut, and so on). However, graphs or related attributes are often only partially observed, introducing learning problems such as link prediction which must be solved prior to optimization. We propose an approach to integrate a differentiable proxy for common graph optimization problems into training of machine learning models for tasks such as link prediction. This allows the model to focus specifically on the downstream task that its predictions will be used for. Experimental results show that our end-to-end system obtains better performance on example optimization tasks than can be obtained by combining state of the art link prediction methods with expert-designed graph optimization algorithms.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.