亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Today, the most widespread, widely applicable technology for gathering data relies on experienced scientists armed with handheld radio telemetry equipment to locate low-power radio transmitters attached to wildlife from the ground. Although aerial robots can transform labor-intensive conservation tasks, the realization of autonomous systems for tackling task complexities under real-world conditions remains a challenge. We developed ConservationBots-small aerial robots for tracking multiple, dynamic, radio-tagged wildlife. The aerial robot achieves robust localization performance and fast task completion times -- significant for energy-limited aerial systems while avoiding close encounters with potential, counter-productive disturbances to wildlife. Our approach overcomes the technical and practical problems posed by combining a lightweight sensor with new concepts: i) planning to determine both trajectory and measurement actions guided by an information-theoretic objective, which allows the robot to strategically select near-instantaneous range-only measurements to achieve faster localization, and time-consuming sensor rotation actions to acquire bearing measurements and achieve robust tracking performance; ii) a bearing detector more robust to noise and iii) a tracking algorithm formulation robust to missed and false detections experienced in real-world conditions. We conducted extensive studies: simulations built upon complex signal propagation over high-resolution elevation data on diverse geographical terrains; field testing; studies with wombats (Lasiorhinus latifrons; nocturnal, vulnerable species dwelling in underground warrens) and tracking comparisons with a highly experienced biologist to validate the effectiveness of our aerial robot and demonstrate the significant advantages over the manual method.

相關內容

We present HOI4D, a large-scale 4D egocentric dataset with rich annotations, to catalyze the research of category-level human-object interaction. HOI4D consists of 2.4M RGB-D egocentric video frames over 4000 sequences collected by 4 participants interacting with 800 different object instances from 16 categories over 610 different indoor rooms. Frame-wise annotations for panoptic segmentation, motion segmentation, 3D hand pose, category-level object pose and hand action have also been provided, together with reconstructed object meshes and scene point clouds. With HOI4D, we establish three benchmarking tasks to promote category-level HOI from 4D visual signals including semantic segmentation of 4D dynamic point cloud sequences, category-level object pose tracking, and egocentric action segmentation with diverse interaction targets. In-depth analysis shows HOI4D poses great challenges to existing methods and produces great research opportunities.

Despite the continued research and progress in building secure systems, Android applications continue to be ridden with vulnerabilities, necessitating effective detection methods. Current strategies involving static and dynamic analysis tools come with limitations like overwhelming number of false positives and limited scope of analysis which make either difficult to adopt. Over the past years, machine learning based approaches have been extensively explored for vulnerability detection, but its real-world applicability is constrained by data requirements and feature engineering challenges. Large Language Models (LLMs), with their vast parameters, have shown tremendous potential in understanding semnatics in human as well as programming languages. We dive into the efficacy of LLMs for detecting vulnerabilities in the context of Android security. We focus on building an AI-driven workflow to assist developers in identifying and rectifying vulnerabilities. Our experiments show that LLMs outperform our expectations in finding issues within applications correctly flagging insecure apps in 91.67% of cases in the Ghera benchmark. We use inferences from our experiments towards building a robust and actionable vulnerability detection system and demonstrate its effectiveness. Our experiments also shed light on how different various simple configurations can affect the True Positive (TP) and False Positive (FP) rates.

Combinatorial Optimization (CO) problems over graphs appear routinely in many applications such as in optimizing traffic, viral marketing in social networks, and matching for job allocation. Due to their combinatorial nature, these problems are often NP-hard. Existing approximation algorithms and heuristics rely on the search space to find the solutions and become time-consuming when this space is large. In this paper, we design a neural method called COMBHelper to reduce this space and thus improve the efficiency of the traditional CO algorithms based on node selection. Specifically, it employs a Graph Neural Network (GNN) to identify promising nodes for the solution set. This pruned search space is then fed to the traditional CO algorithms. COMBHelper also uses a Knowledge Distillation (KD) module and a problem-specific boosting module to bring further efficiency and efficacy. Our extensive experiments show that the traditional CO algorithms with COMBHelper are at least 2 times faster than their original versions.

Data science pipelines commonly utilize dataframe and array operations for tasks such as data preprocessing, analysis, and machine learning. The most popular tools for these tasks are pandas and NumPy. However, these tools are limited to executing on a single node, making them unsuitable for processing large-scale data. Several systems have attempted to distribute data science applications to clusters while maintaining interfaces similar to single-node libraries, enabling data scientists to scale their workloads without significant effort. However, existing systems often struggle with processing large datasets due to Out-of-Memory (OOM) problems caused by poor data partitioning. To overcome these challenges, we develop Xorbits, a high-performance, scalable data science framework specifically designed to distribute data science workloads across clusters while retaining familiar APIs. The key differentiator of Xorbits is its ability to dynamically switch between graph construction and graph execution. Xorbits has been successfully deployed in production environments with up to 5k CPU cores. Its applications span various domains, including user behavior analysis and recommendation systems in the e-commerce sector, as well as credit assessment and risk management in the finance industry. Users can easily scale their data science workloads by simply changing the import line of their pandas and NumPy code. Our experiments demonstrate that Xorbits can effectively process very large datasets without encountering OOM or data-skewing problems. Over the fastest state-of-the-art solutions, Xorbits achieves an impressive 2.66* speedup on average. In terms of API coverage, Xorbits attains a compatibility rate of 96.7%, surpassing the fastest framework by an impressive margin of 60 percentage points. Xorbits is available at https: //github.com/xorbitsai/xorbits.

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司