亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is a significant overlap between people who are supported by income-related social welfare benefits, often in precarious situations, and those who experience greater digital exclusion. We report on a study of claimants using the UK's Universal Credit online welfare benefit system designed as, and still, "digital by default". Through data collection involving remote interviews (n=11) and online surveys (n=66), we expose claimants' own lived experiences interacting with this system. The claimants explain how digital channels can contribute to an imbalance of power and agency, at a time when their own circumstances mean they have reduced abilities, resources and capacities, and where design choices can adversely affect people's utility to leverage help from their own wider socio-technical ecosystems. We contribute eight recommendations from these accounts to inform the future design and development of digital welfare benefit systems for this population, to reduce digital barriers and harms.

相關內容

In economic theory, the concept of externality refers to any indirect effect resulting from an interaction between players that affects the social welfare. Most of the models within which externality has been studied assume that agents have perfect knowledge of their environment and preferences. This is a major hindrance to the practical implementation of many proposed solutions. To address this issue, we consider a two-player bandit setting where the actions of one of the players affect the other player and we extend the Coase theorem [Coase, 1960]. This result shows that the optimal approach for maximizing the social welfare in the presence of externality is to establish property rights, i.e., enable transfers and bargaining between the players. Our work removes the classical assumption that bargainers possess perfect knowledge of the underlying game. We first demonstrate that in the absence of property rights, the social welfare breaks down. We then design a policy for the players which allows them to learn a bargaining strategy which maximizes the total welfare, recovering the Coase theorem under uncertainty.

Many networks in political and social research are bipartite, with edges connecting exclusively across two distinct types of nodes. A common example includes cosponsorship networks, in which legislators are connected indirectly through the bills they support. Yet most existing network models are designed for unipartite networks, where edges can arise between any pair of nodes. However, using a unipartite network model to analyze bipartite networks, as often done in practice, can result in aggregation bias and artificially high-clustering -- a particularly insidious problem when studying the role groups play in network formation. To address these methodological problems, we develop a statistical model of bipartite networks theorized to be generated through group interactions by extending the popular mixed-membership stochastic blockmodel. Our model allows researchers to identify the groups of nodes, within each node type in the bipartite structure, that share common patterns of edge formation. The model also incorporates both node and dyad-level covariates as the predictors of group membership and of observed dyadic relations. We develop an efficient computational algorithm for fitting the model, and apply it to cosponsorship data from the United States Senate. We show that legislators in a Senate that was perfectly split along party lines were able to remain productive and pass major legislation by forming non-partisan, power-brokering coalitions that found common ground through their collaboration on low-stakes bills. We also find evidence for norms of reciprocity, and uncover the substantial role played by policy expertise in the formation of cosponsorships between senators and legislation. We make an open-source software package available that makes it possible for other researchers to uncover similar insights from bipartite networks.

Understanding commonsense causality is a unique mark of intelligence for humans. It helps people understand the principles of the real world better and benefits the decision-making process related to causation. For instance, commonsense causality is crucial in judging whether a defendant's action causes the plaintiff's loss in determining legal liability. Despite its significance, a systematic exploration of this topic is notably lacking. Our comprehensive survey bridges this gap by focusing on taxonomies, benchmarks, acquisition methods, qualitative reasoning, and quantitative measurements in commonsense causality, synthesizing insights from over 200 representative articles. Our work aims to provide a systematic overview, update scholars on recent advancements, provide a pragmatic guide for beginners, and highlight promising future research directions in this vital field.

We examine how users perceive the limitations of an AI system when it encounters a task that it cannot perform perfectly and whether providing explanations alongside its answers aids users in constructing an appropriate mental model of the system's capabilities and limitations. We employ a visual question answer and explanation task where we control the AI system's limitations by manipulating the visual inputs: during inference, the system either processes full-color or grayscale images. Our goal is to determine whether participants can perceive the limitations of the system. We hypothesize that explanations will make limited AI capabilities more transparent to users. However, our results show that explanations do not have this effect. Instead of allowing users to more accurately assess the limitations of the AI system, explanations generally increase users' perceptions of the system's competence - regardless of its actual performance.

It is of critical importance to design digital identity systems that ensure the privacy of citizens as well as protecting them from issuer corruption. Unfortunately, what Europe's and USA's public sectors are currently developing does not offer such basic protections. We aim to solve this issue and propose a method for untraceable selective disclosure and privacy preserving revocation of digital credentials, using the unique homomorphic characteristics of second order Elliptic Curves and Boneh-Lynn-Shacham (BLS) signatures. Our approach ensures that users can selectively reveal only the necessary credentials, while protecting their privacy across multiple presentations. We also aim to protect users from issuer corruption, by making it possible to apply a threshold for revocation to require collective agreement among multiple revocation issuers.

Fervent calls for more robust governance of the harms associated with artificial intelligence (AI) are leading to the adoption around the world of what regulatory scholars have called a management-based approach to regulation. Recent initiatives in the United States and Europe, as well as the adoption of major self-regulatory standards by the International Organization for Standardization, share in common a core management-based paradigm. These management-based initiatives seek to motivate an increase in human oversight of how AI tools are trained and developed. Refinements and systematization of human-guided training techniques will thus be needed to fit within this emerging era of management-based regulatory paradigm. If taken seriously, human-guided training can alleviate some of the technical and ethical pressures on AI, boosting AI performance with human intuition as well as better addressing the needs for fairness and effective explainability. In this paper, we discuss the connection between the emerging management-based regulatory frameworks governing AI and the need for human oversight during training. We broadly cover some of the technical components involved in human-guided training and then argue that the kinds of high-stakes use cases for AI that appear of most concern to regulators should lean more on human-guided training than on data-only training. We hope to foster a discussion between legal scholars and computer scientists involving how to govern a domain of technology that is vast, heterogenous, and dynamic in its applications and risks.

Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a new framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology. It is tailored for multi-period experiments and is particularly effective in settings with many units and prevalent network interference. The framework models causal effects as a dynamic process where a treated unit's impact propagates through the network via neighboring units until equilibrium is reached. This approach allows us to approximate the dynamics of potential outcomes over time, enabling the extraction of valuable information before treatment effects reach equilibrium. Utilizing causal message-passing, we introduce a practical algorithm to estimate the total treatment effect, defined as the impact observed when all units are treated compared to the scenario where no unit receives treatment. We demonstrate the effectiveness of this approach across five numerical scenarios, each characterized by a distinct interference structure.

Culture fundamentally shapes people's reasoning, behavior, and communication. As people increasingly use generative artificial intelligence (AI) to expedite and automate personal and professional tasks, cultural values embedded in AI models may bias people's authentic expression and contribute to the dominance of certain cultures. We conduct a disaggregated evaluation of cultural bias for five widely used large language models (OpenAI's GPT-4o/4-turbo/4/3.5-turbo/3) by comparing the models' responses to nationally representative survey data. All models exhibit cultural values resembling English-speaking and Protestant European countries. We test cultural prompting as a control strategy to increase cultural alignment for each country/territory. For recent models (GPT-4, 4-turbo, 4o), this improves the cultural alignment of the models' output for 71-81% of countries and territories. We suggest using cultural prompting and ongoing evaluation to reduce cultural bias in the output of generative AI.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

北京阿比特科技有限公司