亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is increasing appetite for analysing populations of network data due to the fast-growing body of applications demanding such methods. While methods exist to provide readily interpretable summaries of heterogeneous network populations, these are often descriptive or ad hoc, lacking any formal justification. In contrast, principled analysis methods often provide results difficult to relate back to the applied problem of interest. Motivated by two complementary applied examples, we develop a Bayesian framework to appropriately model complex heterogeneous network populations, whilst also allowing analysts to gain insights from the data, and make inferences most relevant to their needs. The first application involves a study in Computer Science measuring human movements across a University. The second analyses data from Neuroscience investigating relationships between different regions of the brain. While both applications entail analysis of a heterogeneous population of networks, network sizes vary considerably. We focus on the problem of clustering the elements of a network population, where each cluster is characterised by a network representative. We take advantage of the Bayesian machinery to simultaneously infer the cluster membership, the representatives, and the community structure of the representatives, thus allowing intuitive inferences to be made. The implementation of our method on the human movement study reveals interesting movement patterns of individuals in clusters, readily characterised by their network representative. For the brain networks application, our model reveals a cluster of individuals with different network properties of particular interest in Neuroscience. The performance of our method is additionally validated in extensive simulation studies.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

To conduct real-time analytics computations, big data stream processing engines are required to process unbounded data streams at millions of events per second. However, current streaming engines exhibit low throughput and high tuple processing latency. Performance engineering is complicated by the fact that streaming engines constitute complex distributed systems consisting of multiple nodes in the cloud. A profiling technique is required that is capable of measuring time durations at high accuracy across nodes. Standard clock synchronization techniques such as the network time protocol (NTP) are limited to millisecond accuracy, and hence cannot be used. We propose a profiling technique that relates the time-stamp counters (TSCs) of nodes to measure the duration of events in a streaming framework. The precision of the TSC relation determines the accuracy of the measured duration. The TSC relation is conducted in quiescent periods of the network to achieve accuracy in the tens of microseconds. We propose a throughput-controlled data generator to reliably determine the sustainable throughput of a streaming engine. To facilitate high-throughput data ingestion, we propose a concurrent object factory that moves the deserialization overhead of incoming data tuples off the critical path of the streaming framework. The evaluation of the proposed techniques within the Apache Storm streaming framework on the Google Compute Engine public cloud shows that data ingestion increases from $700$ $\text{k}$ to $4.68$ $\text{M}$ tuples per second, and that time durations can be profiled at a measurement accuracy of $92$ $\mu\text{s}$, which is three orders of magnitude higher than the accuracy of NTP, and one order of magnitude higher than prior work.

This paper surveys some recent developments in measures of association related to a new coefficient of correlation introduced by the author. A straightforward extension of this coefficient to standard Borel spaces (which includes all Polish spaces), overlooked in the literature so far, is proposed at the end of the survey.

Very distinct strategies can be deployed to recognize and characterize an unknown environment or a shape. A recent and promising approach, especially in robotics, is to reduce the complexity of the exploratory units to a minimum. Here, we show that this frugal strategy can be taken to the extreme by exploiting the power of statistical geometry and introducing new invariant features. We show that an elementary robot devoid of any orientation or observation system, exploring randomly, can access global information about an environment such as the values of the explored area and perimeter. The explored shapes are of arbitrary geometry and may even non-connected. From a dictionary, this most simple robot can thus identify various shapes such as famous monuments and even read a text.

This paper addresses the issues of controlling and analyzing the population diversity in quantum-behaved particle swarm optimization (QPSO), which is an optimization approach motivated by concepts in quantum mechanics and PSO. In order to gain an in-depth understanding of the role the diversity plays in the evolving process, we first define the genotype diversity by the distance to the average point of the particles' positions and the phenotype diversity by the fitness values for the QPSO. Then, the correlations between the two types of diversities and the search performance are tested and analyzed on several benchmark functions, and the distance-to-average-point diversity is showed to have stronger association with the search performance during the evolving processes. Finally, in the light of the performed diversity analyses, two strategies for controlling the distance-to-average-point diversities are proposed for the purpose of improving the search ability of the QPSO algorithm. Empirical studies on the QPSO with the introduced diversity control methods are performed on a set of benchmark functions from the CEC 2005 benchmark suite. The performance of the proposed methods are evaluated and compared with the original QPSO and other PSO variants.

Correlation-diversified portfolios can be constructed by finding the maximum independent sets (MISs) in market graphs with edges corresponding to correlations between two stocks. The computational complexity to find the MIS increases exponentially as the size of the market graph increases, making the MIS selection in a large-scale market graph difficult. Here we construct a diversified portfolio by solving the MIS problem for a large-scale market graph with a combinatorial optimization solver (an Ising machine) based on a quantum-inspired algorithm called simulated bifurcation (SB) and investigate the investment performance of the constructed portfolio using long-term historical market data. Comparisons using stock universes of various sizes [TOPIX 100, Nikkei 225, TOPIX 1000, and TOPIX (including approximately 2,000 constituents)] show that the SB-based solver outperforms conventional MIS solvers in terms of computation-time and solution-accuracy. By using the SB-based solver, we optimized the parameters of a MIS portfolio strategy through iteration of the backcast simulation that calculates the performance of the MIS portfolio strategy based on a large-scale universe covering more than 1,700 Japanese stocks for a long period of 10 years. It has been found that the best MIS portfolio strategy (Sharpe ratio = 1.16, annualized return/risk = 16.3%/14.0%) outperforms the major indices such as TOPIX (0.66, 10.0%/15.2%) and MSCI Japan Minimum Volatility Index (0.64, 7.7%/12.1%) for the period from 2013 to 2023.

Background: Speech and language pathologists (SLPs) often relyon judgements of speech fluency for diagnosing or monitoringpatients with aphasia. However, such subjective methods havebeen criticised for their lack of reliability and their clinical cost interms of time. Aims: This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency in people with aphasia (PWA). Methods & Procedures: Twenty-nine PWA and five control participantswere recruited via non-profit organizations and SLP networks. All participants were recorded while reading out loud a set ofsentences taken from the French version of the Boston Diagnostic Aphasia Examination. Three trained SLPs assessed the fluency of each sentence on a five-point qualitative scale. A forward-backward divergence segmentation and a clustering algorithm were used to compute, for each sentence, four automatic predictors of speech fluency: pseudo-syllable rate, speech ratio, rate of silent breaks, and standard deviation of pseudo-syllable length. The four predictors were finally combined into multivariate regression models (a multiplelinear regression - MLR, and two non-linear models) to predict the average SLP ratings of speech fluency, using a leave-one speaker-out validation scheme. Outcomes & Results: All models achieved accurate predictions of speech fluency ratings, with average root-mean-square errors as low as 0.5. The MLR yielded a correlation coefficient of 0.87 with reference ratings at the sentence level, and of 0.93 when aggregating the data for each participant. The inclusion of an additional predictor sensitive to repetitions improved further the predictions with a correlation coefficient of 0.91 at the sentence level, and of 0.96 at the participant level. Conclusions: The algorithms used in this study can constitute a cost-effective and reliable tool for the assessment of the speech fluency of patients with aphasia in read-aloud tasks. Perspectives for the assessment of spontaneous speech are discussed.

Understanding how different networks relate to each other is key for obtaining a greater insight into complex systems. Here, we introduce an intuitive yet powerful framework to characterise the relationship between two networks comprising the same nodes. We showcase our framework by decomposing the shortest paths between nodes as being contributed uniquely by one or the other source network, or redundantly by either, or synergistically by the two together. Our approach takes into account the networks' full topology, and it also provides insights at multiple levels of resolution: from global statistics, to individual paths of different length. We show that this approach is widely applicable, from brains to the London public transport system. In humans and across 123 other mammalian species, we demonstrate that reliance on unique contributions by long-range white matter fibers is a conserved feature of mammalian structural brain networks. Across species, we also find that efficient communication relies on significantly greater synergy between long-range and short-range fibers than expected by chance, and significantly less redundancy. Our framework may find applications to help decide how to trade-off different desiderata when designing network systems, or to evaluate their relative presence in existing systems, whether biological or artificial.

Estimating causal effects from observational network data is a significant but challenging problem. Existing works in causal inference for observational network data lack an analysis of the generalization bound, which can theoretically provide support for alleviating the complex confounding bias and practically guide the design of learning objectives in a principled manner. To fill this gap, we derive a generalization bound for causal effect estimation in network scenarios by exploiting 1) the reweighting schema based on joint propensity score and 2) the representation learning schema based on Integral Probability Metric (IPM). We provide two perspectives on the generalization bound in terms of reweighting and representation learning, respectively. Motivated by the analysis of the bound, we propose a weighting regression method based on the joint propensity score augmented with representation learning. Extensive experimental studies on two real-world networks with semi-synthetic data demonstrate the effectiveness of our algorithm.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.

北京阿比特科技有限公司