The unique capabilities of Large Language Models (LLMs), such as the natural language text generation ability, position them as strong candidates for providing explanation for recommendations. However, despite the size of the LLM, most existing models struggle to produce zero-shot explanations reliably. To address this issue, we propose a framework called Logic-Scaffolding, that combines the ideas of aspect-based explanation and chain-of-thought prompting to generate explanations through intermediate reasoning steps. In this paper, we share our experience in building the framework and present an interactive demonstration for exploring our results.
Large language models (LLMs) have achieved remarkable success due to their exceptional generative capabilities. Despite their success, they also have inherent limitations such as a lack of up-to-date knowledge and hallucination. Retrieval-Augmented Generation (RAG) is a state-of-the-art technique to mitigate those limitations. In particular, given a question, RAG retrieves relevant knowledge from a knowledge database to augment the input of the LLM. For instance, the retrieved knowledge could be a set of top-k texts that are most semantically similar to the given question when the knowledge database contains millions of texts collected from Wikipedia. As a result, the LLM could utilize the retrieved knowledge as the context to generate an answer for the given question. Existing studies mainly focus on improving the accuracy or efficiency of RAG, leaving its security largely unexplored. We aim to bridge the gap in this work. Particularly, we propose PoisonedRAG , a set of knowledge poisoning attacks to RAG, where an attacker could inject a few poisoned texts into the knowledge database such that the LLM generates an attacker-chosen target answer for an attacker-chosen target question. We formulate knowledge poisoning attacks as an optimization problem, whose solution is a set of poisoned texts. Depending on the background knowledge (e.g., black-box and white-box settings) of an attacker on the RAG, we propose two solutions to solve the optimization problem, respectively. Our results on multiple benchmark datasets and LLMs show our attacks could achieve 90% attack success rates when injecting 5 poisoned texts for each target question into a database with millions of texts. We also evaluate recent defenses and our results show they are insufficient to defend against our attacks, highlighting the need for new defenses.
In recent years, there has been growing interest in text-to-SQL translation, which is the task of converting natural language questions into executable SQL queries. This technology is important for its potential to democratize data extraction from databases. However, some of its key hurdles include domain generalisation, which is the ability to adapt to previously unseen databases, and alignment of natural language questions with the corresponding SQL queries. To overcome these challenges, we introduce SQLformer, a novel Transformer architecture specifically crafted to perform text-to-SQL translation tasks. Our model predicts SQL queries as abstract syntax trees (ASTs) in an autoregressive way, incorporating structural inductive bias in the encoder and decoder layers. This bias, guided by database table and column selection, aids the decoder in generating SQL query ASTs represented as graphs in a Breadth-First Search canonical order. Comprehensive experiments illustrate the state-of-the-art performance of SQLformer in the challenging text-to-SQL Spider benchmark. Our implementation is available at //github.com/AdrianBZG/SQLformer.
The advancement of natural language processing has paved the way for automated scoring systems in various languages, such as German (e.g., German BERT [G-BERT]). Automatically scoring written responses to science questions in German is a complex task and challenging for standard G-BERT as they lack contextual knowledge in the science domain and may be unaligned with student writing styles. This paper developed a contextualized German Science Education BERT (G-SciEdBERT), an innovative large language model tailored for scoring German-written responses to science tasks. Using G-BERT, we pre-trained G-SciEdBERT on a corpus of 50K German written science responses with 5M tokens to the Programme for International Student Assessment (PISA) 2015. We fine-tuned G-SciEdBERT on 59 assessment items and examined the scoring accuracy. We then compared its performance with G-BERT. Our findings reveal a substantial improvement in scoring accuracy with G-SciEdBERT, demonstrating a 10% increase of quadratic weighted kappa compared to G-BERT (mean accuracy difference = 0.096, SD = 0.024). These insights underline the significance of specialized language models like G-SciEdBERT, which is trained to enhance the accuracy of automated scoring, offering a substantial contribution to the field of AI in education.
Large language Models (LLMs), though growing exceedingly powerful, comprises of orders of magnitude less neurons and synapses than the human brain. However, it requires significantly more power/energy to operate. In this work, we propose a novel bio-inspired spiking language model (LM) which aims to reduce the computational cost of conventional LMs by drawing motivation from the synaptic information flow in the brain. In this paper, we demonstrate a framework that leverages the average spiking rate of neurons at equilibrium to train a neuromorphic spiking LM using implicit differentiation technique, thereby overcoming the non-differentiability problem of spiking neural network (SNN) based algorithms without using any type of surrogate gradient. The steady-state convergence of the spiking neurons also allows us to design a spiking attention mechanism, which is critical in developing a scalable spiking LM. Moreover, the convergence of average spiking rate of neurons at equilibrium is utilized to develop a novel ANN-SNN knowledge distillation based technique wherein we use a pre-trained BERT model as "teacher" to train our "student" spiking architecture. While the primary architecture proposed in this paper is motivated by BERT, the technique can be potentially extended to different kinds of LLMs. Our work is the first one to demonstrate the performance of an operational spiking LM architecture on multiple different tasks in the GLUE benchmark.
Common self-improvement approaches for large language models (LLMs), such as STaR (Zelikman et al., 2022), iteratively fine-tune LLMs on self-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
ExaRanker recently introduced an approach to training information retrieval (IR) models, incorporating natural language explanations as additional labels. The method addresses the challenge of limited labeled examples, leading to improvements in the effectiveness of IR models. However, the initial results were based on proprietary language models such as GPT-3.5, which posed constraints on dataset size due to its cost and data privacy. In this paper, we introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations. The method has been tested using different LLMs and datasets sizes to better comprehend the effective contribution of data augmentation. Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases. Notably, the data augmentation method proves advantageous even with large datasets, as evidenced by ExaRanker surpassing the target baseline by 0.6 nDCG@10 points in our study. To encourage further advancements by the research community, we have open-sourced both the code and datasets at //github.com/unicamp-dl/ExaRanker.
In recent years, Transformers have become the de-facto architecture for sequence modeling on text and a variety of multi-dimensional data, such as images and video. However, the use of self-attention layers in a Transformer incurs prohibitive compute and memory complexity that scales quadratically w.r.t. the sequence length. A recent architecture, Mamba, based on state space models has been shown to achieve comparable performance for modeling text sequences, while scaling linearly with the sequence length. In this work, we present Mamba-ND, a generalized design extending the Mamba architecture to arbitrary multi-dimensional data. Our design alternatively unravels the input data across different dimensions following row-major orderings. We provide a systematic comparison of Mamba-ND with several other alternatives, based on prior multi-dimensional extensions such as Bi-directional LSTMs and S4ND. Empirically, we show that Mamba-ND demonstrates performance competitive with the state-of-the-art on a variety of multi-dimensional benchmarks, including ImageNet-1K classification, HMDB-51 action recognition, and ERA5 weather forecasting.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.