亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Virtualized Radio Access Networks (vRANs) are fully configurable and can be implemented at a low cost over commodity platforms to enable network management flexibility. In this paper, a novel vRAN reconfiguration problem is formulated to jointly reconfigure the functional splits of the base stations (BSs), locations of the virtualized central units (vCUs) and distributed units (vDUs), their resources, and the routing for each BS data flow. The objective is to minimize the long-term total network operation cost while adapting to the varying traffic demands and resource availability. Testbed measurements are performed to study the relationship between the traffic demands and computing resources, which reveals high variance and depends on the platform and its load. Consequently, finding the perfect model of the underlying system is non-trivial. Therefore, to solve the proposed problem, a deep reinforcement learning (RL)-based framework is proposed and developed using model-free RL approaches. Moreover, the problem consists of multiple BSs sharing the same resources, which results in a multi-dimensional discrete action space and leads to a combinatorial number of possible actions. To overcome this curse of dimensionality, action branching architecture, which is an action decomposition method with a shared decision module followed by neural network is combined with Dueling Double Deep Q-network (D3QN) algorithm. Simulations are carried out using an O-RAN compliant model and real traces of the testbed. Our numerical results show that the proposed framework successfully learns the optimal policy that adaptively selects the vRAN configurations, where its learning convergence can be further expedited through transfer learning even in different vRAN systems. It offers significant cost savings by up to 59\% of a static benchmark, 35\% of DDPG with discretization, and 76\% of non-branching D3QN.

相關內容

We study the composite convex optimization problems with a Quasi-Self-Concordant smooth component. This problem class naturally interpolates between classic Self-Concordant functions and functions with Lipschitz continuous Hessian. Previously, the best complexity bounds for this problem class were associated with trust-region schemes and implementations of a ball-minimization oracle. In this paper, we show that for minimizing Quasi-Self-Concordant functions we can use instead the basic Newton Method with Gradient Regularization. For unconstrained minimization, it only involves a simple matrix inversion operation (solving a linear system) at each step. We prove a fast global linear rate for this algorithm, matching the complexity bound of the trust-region scheme, while our method remains especially simple to implement. Then, we introduce the Dual Newton Method, and based on it, develop the corresponding Accelerated Newton Scheme for this problem class, which further improves the complexity factor of the basic method. As a direct consequence of our results, we establish fast global linear rates of simple variants of the Newton Method applied to several practical problems, including Logistic Regression, Soft Maximum, and Matrix Scaling, without requiring additional assumptions on strong or uniform convexity for the target objective.

There is a growing interest in using pose estimation algorithms for video-based assessment of Bradykinesia in Parkinson's Disease (PD) to facilitate remote disease assessment and monitoring. However, the accuracy of pose estimation algorithms in videos from video streaming services during Telehealth appointments has not been studied. In this study, we used seven off-the-shelf hand pose estimation models to estimate the movement of the thumb and index fingers in videos of the finger-tapping (FT) test recorded from Healthy Controls (HC) and participants with PD and under two different conditions: streaming (videos recorded during a live Zoom meeting) and on-device (videos recorded locally with high-quality cameras). The accuracy and reliability of the models were estimated by comparing the models' output with manual results. Three of the seven models demonstrated good accuracy for on-device recordings, and the accuracy decreased significantly for streaming recordings. We observed a negative correlation between movement speed and the model's accuracy for the streaming recordings. Additionally, we evaluated the reliability of ten movement features related to bradykinesia extracted from video recordings of PD patients performing the FT test. While most of the features demonstrated excellent reliability for on-device recordings, most of the features demonstrated poor to moderate reliability for streaming recordings. Our findings highlight the limitations of pose estimation algorithms when applied to video recordings obtained during Telehealth visits, and demonstrate that on-device recordings can be used for automatic video-assessment of bradykinesia in PD.

Tracking any given object(s) spatially and temporally is a common purpose in Visual Object Tracking (VOT) and Video Object Segmentation (VOS). Joint tracking and segmentation have been attempted in some studies but they often lack full compatibility of both box and mask in initialization and prediction, and mainly focus on single-object scenarios. To address these limitations, this paper proposes a Multi-object Mask-box Integrated framework for unified Tracking and Segmentation, dubbed MITS. Firstly, the unified identification module is proposed to support both box and mask reference for initialization, where detailed object information is inferred from boxes or directly retained from masks. Additionally, a novel pinpoint box predictor is proposed for accurate multi-object box prediction, facilitating target-oriented representation learning. All target objects are processed simultaneously from encoding to propagation and decoding, as a unified pipeline for VOT and VOS. Experimental results show MITS achieves state-of-the-art performance on both VOT and VOS benchmarks. Notably, MITS surpasses the best prior VOT competitor by around 6% on the GOT-10k test set, and significantly improves the performance of box initialization on VOS benchmarks. The code is available at //github.com/yoxu515/MITS.

Consistency regularization methods, such as R-Drop (Liang et al., 2021) and CrossConST (Gao et al., 2023), have achieved impressive supervised and zero-shot performance in the neural machine translation (NMT) field. Can we also boost end-to-end (E2E) speech-to-text translation (ST) by leveraging consistency regularization? In this paper, we conduct empirical studies on intra-modal and cross-modal consistency and propose two training strategies, SimRegCR and SimZeroCR, for E2E ST in regular and zero-shot scenarios. Experiments on the MuST-C benchmark show that our approaches achieve state-of-the-art (SOTA) performance in most translation directions. The analyses prove that regularization brought by the intra-modal consistency, instead of modality gap, is crucial for the regular E2E ST, and the cross-modal consistency could close the modality gap and boost the zero-shot E2E ST performance.

Functionally graded materials (FGM) are applied in HVDC gas insulated lines (GIL) to control the electric field within the DC insulation system. In HVDC GIL, FGM with a spatial distribution of the electric conductivity (conductivity-FGM) is applied to control the electric field under DC steady state condition. However, besides DC steady state, different DC conditions occur, e.g. DC-on process, polarity reversal and lightning impulse. Under these conditions conductivity-FGM is not sufficient to control the electric field, since these conditions result in transient capacitive fields, where the permittivity is decisive for the electric field. In this paper, we suggest combining conductivity-FGM and a spatial distribution of permittivity (permittivity-FGM) in the spacer material to control the electric field around DC-GIL spacer for various DC-conditions, considering nonlinear material models for the insulating gas and the epoxy spacer. A variation of the spatial distribution of permittivity and conductivity in the spacer is investigated in this paper for an effective field reduction. The results show a reduction of the electric field intensity up to 65.8 %, when conductivity/permittivity-FGM is applied.

Large Language Models (LLMs) present strong general capabilities, and a current compelling challenge is stimulating their specialized capabilities, such as machine translation, through low-cost instruction tuning. The standard instruction-following data is sequentially organized as the concatenation of an instruction, an input, and a response. As the attention mechanism of LLMs has limitations on local focus, LLMs tend to focus more on the words or sentences nearby at each position. This leads to a high risk of instruction forgetting during decoding. To alleviate the above issues, We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS. SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations. OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation. We apply our methods to two main-stream open-source LLMs, BLOOM and LLaMA. The experimental results demonstrate significant improvements in translation performance with SWIE based on BLOOMZ-3b, particularly in zero-shot and long text translations due to reduced instruction forgetting risk. Additionally, OVERMISS outperforms the baseline in translation performance (e.g. an increase in BLEU scores from 0.69 to 3.12 and an average improvement of 0.48 percentage comet scores for LLaMA-7b) with further enhancements seen in models combining OVERMISS and SWIE (e.g. the BLUE scores increase up to 0.56 from English to German across three different backbones), and both exhibit improvements in the faithfulness metric based on word alignment.

Distributed Ledger Technologies (DLTs) have rapidly evolved, necessitating comprehensive insights into their diverse components. However, a systematic literature review that emphasizes the Environmental, Sustainability, and Governance (ESG) components of DLT remains lacking. To bridge this gap, we selected 107 seed papers to build a citation network of 63,083 references and refined it to a corpus of 24,539 publications for analysis. Then, we labeled the named entities in 46 papers according to twelve top-level categories derived from an established technology taxonomy and enhanced the taxonomy by pinpointing DLT's ESG elements. Leveraging transformer-based language models, we fine-tuned a pre-trained language model for a Named Entity Recognition (NER) task using our labeled dataset. We used our fine-tuned language model to distill the corpus to 505 key papers, facilitating a literature review via named entities and temporal graph analysis on DLT evolution in the context of ESG. Our contributions are a methodology to conduct a machine learning-driven systematic literature review in the DLT field, placing a special emphasis on ESG aspects. Furthermore, we present a first-of-its-kind NER dataset, composed of 54,808 named entities, designed for DLT and ESG-related explorations.

Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司