亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The emergence of Large Language Models (LLMs) has great potential to reshape the landscape of many social media platforms. While this can bring promising opportunities, it also raises many threats, such as biases and privacy concerns, and may contribute to the spread of propaganda by malicious actors. We developed the "LLMs Among Us" experimental framework on top of the Mastodon social media platform for bot and human participants to communicate without knowing the ratio or nature of bot and human participants. We built 10 personas with three different LLMs, GPT-4, LLama 2 Chat, and Claude. We conducted three rounds of the experiment and surveyed participants after each round to measure the ability of LLMs to pose as human participants without human detection. We found that participants correctly identified the nature of other users in the experiment only 42% of the time despite knowing the presence of both bots and humans. We also found that the choice of persona had substantially more impact on human perception than the choice of mainstream LLMs.

相關內容

生成(cheng)式(shi)人工(gong)智(zhi)能是利用復雜的(de)(de)(de)(de)(de)算法(fa)、模(mo)型(xing)和(he)規(gui)則,從大規(gui)模(mo)數據(ju)集(ji)中學(xue)習,以創造新的(de)(de)(de)(de)(de)原創內容(rong)的(de)(de)(de)(de)(de)人工(gong)智(zhi)能技(ji)(ji)術(shu)。這(zhe)項(xiang)技(ji)(ji)術(shu)能夠(gou)創造文本、圖片、聲音、視頻和(he)代碼等多(duo)種類型(xing)的(de)(de)(de)(de)(de)內容(rong),全面(mian)超越了傳統軟件的(de)(de)(de)(de)(de)數據(ju)處理和(he)分析(xi)能力。2022年末,OpenAI推出(chu)(chu)的(de)(de)(de)(de)(de)ChatGPT標(biao)志著這(zhe)一技(ji)(ji)術(shu)在文本生成(cheng)領域取得(de)了顯著進(jin)展,2023年被稱為(wei)生成(cheng)式(shi)人工(gong)智(zhi)能的(de)(de)(de)(de)(de)突破之年。這(zhe)項(xiang)技(ji)(ji)術(shu)從單(dan)一的(de)(de)(de)(de)(de)語言生成(cheng)逐步(bu)向多(duo)模(mo)態、具(ju)身(shen)化快速發(fa)展。在圖像生成(cheng)方面(mian),生成(cheng)系(xi)統在解(jie)釋提(ti)示和(he)生成(cheng)逼真(zhen)輸出(chu)(chu)方面(mian)取得(de)了顯著的(de)(de)(de)(de)(de)進(jin)步(bu)。同(tong)時(shi),視頻和(he)音頻的(de)(de)(de)(de)(de)生成(cheng)技(ji)(ji)術(shu)也在迅速發(fa)展,這(zhe)為(wei)虛擬(ni)現(xian)(xian)實和(he)元(yuan)宇宙的(de)(de)(de)(de)(de)實現(xian)(xian)提(ti)供了新的(de)(de)(de)(de)(de)途徑。生成(cheng)式(shi)人工(gong)智(zhi)能技(ji)(ji)術(shu)在各行業、各領域都具(ju)有廣泛的(de)(de)(de)(de)(de)應用前景。

This technical report describes the incorporation of political blogs into Pollux, the Specialised Information Service (FID) for Political Science in Germany. Considering the widespread use of political blogs in political science research, we decided to include them in the Pollux search system to enhance the available information infrastructure. We describe the crawling and analyzing of the blogs and the pipeline that integrates them into the Pollux system. To demonstrate the content of the incorporated blogs, we also provide a visualization of the topics covered by the blog posts during the first three months following integration.

The effectiveness of Deep Neural Networks (DNNs) heavily relies on the abundance and accuracy of available training data. However, collecting and annotating data on a large scale is often both costly and time-intensive, particularly in medical cases where practitioners are already occupied with their duties. Moreover, ensuring that the model remains robust across various scenarios of image capture is crucial in medical domains, especially when dealing with ultrasound images that vary based on the settings of different devices and the manual operation of the transducer. To address this challenge, we introduce a novel pipeline called MEDDAP, which leverages Stable Diffusion (SD) models to augment existing small datasets by automatically generating new informative labeled samples. Pretrained checkpoints for SD are typically based on natural images, and training them for medical images requires significant GPU resources due to their heavy parameters. To overcome this challenge, we introduce USLoRA (Ultrasound Low-Rank Adaptation), a novel fine-tuning method tailored specifically for ultrasound applications. USLoRA allows for selective fine-tuning of weights within SD, requiring fewer than 0.1\% of parameters compared to fully fine-tuning only the UNet portion of SD. To enhance dataset diversity, we incorporate different adjectives into the generation process prompts, thereby desensitizing the classifiers to intensity changes across different images. This approach is inspired by clinicians' decision-making processes regarding breast tumors, where tumor shape often plays a more crucial role than intensity. In conclusion, our pipeline not only outperforms classifiers trained on the original dataset but also demonstrates superior performance when encountering unseen datasets. The source code is available at //github.com/yasamin-med/MEDDAP.

In the field of Artificial Intelligence, Large Language Models (LLMs) have demonstrated significant advances in user intent understanding and response in a number of specialized domains, including medicine, law, and finance. However, in the unique domain of traditional Chinese medicine (TCM), the performance enhancement of LLMs is challenged by the essential differences between its theories and modern medicine, as well as the lack of specialized corpus resources. In this paper, we aim to construct and organize a professional corpus in the field of TCM, to endow the large model with professional knowledge that is characteristic of TCM theory, and to successfully develop the Qibo model based on LLaMA, which is the first LLM in the field of TCM to undergo a complete training process from pre-training to Supervised Fine-Tuning (SFT). Furthermore, we develop the Qibo-benchmark, a specialized tool for evaluating the performance of LLMs, which is a specialized tool for evaluating the performance of LLMs in the TCM domain. This tool will provide an important basis for quantifying and comparing the understanding and application capabilities of different models in the field of traditional Chinese medicine, and provide guidance for future research directions and practical applications of intelligent assistants for traditional Chinese medicine. Finally, we conducted sufficient experiments to prove that Qibo has good performance in the field of traditional Chinese medicine.

This paper proposes LONER, the first real-time LiDAR SLAM algorithm that uses a neural implicit scene representation. Existing implicit mapping methods for LiDAR show promising results in large-scale reconstruction, but either require groundtruth poses or run slower than real-time. In contrast, LONER uses LiDAR data to train an MLP to estimate a dense map in real-time, while simultaneously estimating the trajectory of the sensor. To achieve real-time performance, this paper proposes a novel information-theoretic loss function that accounts for the fact that different regions of the map may be learned to varying degrees throughout online training. The proposed method is evaluated qualitatively and quantitatively on two open-source datasets. This evaluation illustrates that the proposed loss function converges faster and leads to more accurate geometry reconstruction than other loss functions used in depth-supervised neural implicit frameworks. Finally, this paper shows that LONER estimates trajectories competitively with state-of-the-art LiDAR SLAM methods, while also producing dense maps competitive with existing real-time implicit mapping methods that use groundtruth poses.

The rapid spread of misinformation through social media platforms has raised concerns regarding its impact on public opinion. While misinformation is prevalent in other languages, the majority of research in this field has concentrated on the English language. Hence, there is a scarcity of datasets for other languages, including Turkish. To address this concern, we have introduced the FCTR dataset, consisting of 3238 real-world claims. This dataset spans multiple domains and incorporates evidence collected from three Turkish fact-checking organizations. Additionally, we aim to assess the effectiveness of cross-lingual transfer learning for low-resource languages, with a particular focus on Turkish. We demonstrate in-context learning (zero-shot and few-shot) performance of large language models in this context. The experimental results indicate that the dataset has the potential to advance research in the Turkish language.

We present a visual computing framework for analyzing moral rhetoric on social media around controversial topics. Using Moral Foundation Theory, we propose a methodology for deconstructing and visualizing the \textit{when}, \textit{where}, and \textit{who} behind each of these moral dimensions as expressed in microblog data. We characterize the design of this framework, developed in collaboration with experts from language processing, communications, and causal inference. Our approach integrates microblog data with multiple sources of geospatial and temporal data, and leverages unsupervised machine learning (generalized additive models) to support collaborative hypothesis discovery and testing. We implement this approach in a system named MOTIV. We illustrate this approach on two problems, one related to Stay-at-home policies during the COVID-19 pandemic, and the other related to the Black Lives Matter movement. Through detailed case studies and discussions with collaborators, we identify several insights discovered regarding the different drivers of moral sentiment in social media. Our results indicate that this visual approach supports rapid, collaborative hypothesis testing, and can help give insights into the underlying moral values behind controversial political issues. Supplemental Material: //osf.io/ygkzn/?view_only=6310c0886938415391d977b8aae8b749

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at //github.com/Strivin0311/long-llms-learning.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

北京阿比特科技有限公司