亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel approach to the fine alignment of images in a burst captured by a handheld camera. In contrast to traditional techniques that estimate two-dimensional transformations between frame pairs or rely on discrete correspondences, the proposed algorithm establishes dense correspondences by optimizing both the camera motion and surface depth and orientation at every pixel. This approach improves alignment, particularly in scenarios with parallax challenges. Extensive experiments with synthetic bursts featuring small and even tiny baselines demonstrate that it outperforms the best optical flow methods available today in this setting, without requiring any training. Beyond enhanced alignment, our method opens avenues for tasks beyond simple image restoration, such as depth estimation and 3D reconstruction, as supported by promising preliminary results. This positions our approach as a versatile tool for various burst image processing applications.

相關內容

This paper examines the quantization methods used in large-scale data analysis models and their hyperparameter choices. The recent surge in data analysis scale has significantly increased computational resource requirements. To address this, quantizing model weights has become a prevalent practice in data analysis applications such as deep learning. Quantization is particularly vital for deploying large models on devices with limited computational resources. However, the selection of quantization hyperparameters, like the number of bits and value range for weight quantization, remains an underexplored area. In this study, we employ the typical case analysis from statistical physics, specifically the replica method, to explore the impact of hyperparameters on the quantization of simple learning models. Our analysis yields three key findings: (i) an unstable hyperparameter phase, known as replica symmetry breaking, occurs with a small number of bits and a large quantization width; (ii) there is an optimal quantization width that minimizes error; and (iii) quantization delays the onset of overparameterization, helping to mitigate overfitting as indicated by the double descent phenomenon. We also discover that non-uniform quantization can enhance stability. Additionally, we develop an approximate message-passing algorithm to validate our theoretical results.

In this paper, we introduce YONOS-SR, a novel stable diffusion-based approach for image super-resolution that yields state-of-the-art results using only a single DDIM step. We propose a novel scale distillation approach to train our SR model. Instead of directly training our SR model on the scale factor of interest, we start by training a teacher model on a smaller magnification scale, thereby making the SR problem simpler for the teacher. We then train a student model for a higher magnification scale, using the predictions of the teacher as a target during the training. This process is repeated iteratively until we reach the target scale factor of the final model. The rationale behind our scale distillation is that the teacher aids the student diffusion model training by i) providing a target adapted to the current noise level rather than using the same target coming from ground truth data for all noise levels and ii) providing an accurate target as the teacher has a simpler task to solve. We empirically show that the distilled model significantly outperforms the model trained for high scales directly, specifically with few steps during inference. Having a strong diffusion model that requires only one step allows us to freeze the U-Net and fine-tune the decoder on top of it. We show that the combination of spatially distilled U-Net and fine-tuned decoder outperforms state-of-the-art methods requiring 200 steps with only one single step.

This paper presents a novel solution concept, called BAR Nash Equilibrium (BARNE) and apply it to analyse the Verifier's dilemma, a fundamental problem in blockchain. Our solution concept adapts the Nash equilibrium (NE) to accommodate interactions among Byzantine, altruistic and rational agents, which became known as the BAR setting in the literature. We prove the existence of BARNE in a large class of games and introduce two natural refinements, global and local stability. Using this equilibrium and its refinement, we analyse the free-rider problem in the context of byzantine consensus. We demonstrate that by incorporating fines and forced errors into a standard quorum-based blockchain protocol, we can effectively reestablish honest behavior as a globally stable BARNE.

This paper introduces RAISE (Reasoning and Acting through Scratchpad and Examples), an advanced architecture enhancing the integration of Large Language Models (LLMs) like GPT-4 into conversational agents. RAISE, an enhancement of the ReAct framework, incorporates a dual-component memory system, mirroring human short-term and long-term memory, to maintain context and continuity in conversations. It entails a comprehensive agent construction scenario, including phases like Conversation Selection, Scene Extraction, CoT Completion, and Scene Augmentation, leading to the LLMs Training phase. This approach appears to enhance agent controllability and adaptability in complex, multi-turn dialogues. Our preliminary evaluations in a real estate sales context suggest that RAISE has some advantages over traditional agents, indicating its potential for broader applications. This work contributes to the AI field by providing a robust framework for developing more context-aware and versatile conversational agents.

This paper introduces a novel ridgelet transform-based method for Poisson image denoising. Our work focuses on harnessing the Poisson noise's unique non-additive and signal-dependent properties, distinguishing it from Gaussian noise. The core of our approach is a new thresholding scheme informed by theoretical insights into the ridgelet coefficients of Poisson-distributed images and adaptive thresholding guided by Stein's method. We verify our theoretical model through numerical experiments and demonstrate the potential of ridgelet thresholding across assorted scenarios. Our findings represent a significant step in enhancing the understanding of Poisson noise and offer an effective denoising method for images corrupted with it.

This paper develops a new dimension-free Azuma-Hoeffding type bound on summation norm of a martingale difference sequence with random individual bounds. With this novel result, we provide high-probability bounds for the gradient norm estimator in the proposed algorithm Prob-SARAH, which is a modified version of the StochAstic Recursive grAdient algoritHm (SARAH), a state-of-art variance reduced algorithm that achieves optimal computational complexity in expectation for the finite sum problem. The in-probability complexity by Prob-SARAH matches the best in-expectation result up to logarithmic factors. Empirical experiments demonstrate the superior probabilistic performance of Prob-SARAH on real datasets compared to other popular algorithms.

We propose a novel coding scheme for DNA-based storage systems, called the shift-interleave (SI) coding, designed to correct insertion, deletion, and substitution (IDS) errors, as well as sequence losses. The SI coding scheme employs multiple codewords from two binary low-density parity-check codes. These codewords are processed to form DNA base sequences through shifting, bit-to-base mapping, and interleaving. At the receiver side, an efficient non-iterative detection and decoding scheme is employed to sequentially estimate codewords. The numerical results demonstrate the excellent performance of the SI coding scheme in correcting both IDS errors and sequence losses.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司