亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Achieving robust uncertainty quantification for deep neural networks represents an important requirement in many real-world applications of deep learning such as medical imaging where it is necessary to assess the reliability of a neural network's prediction. Bayesian neural networks are a promising approach for modeling uncertainties in deep neural networks. Unfortunately, generating samples from the posterior distribution of neural networks is a major challenge. One significant advance in that direction would be the incorporation of adaptive step sizes, similar to modern neural network optimizers, into Monte Carlo Markov chain sampling algorithms without significantly increasing computational demand. Over the past years, several papers have introduced sampling algorithms with claims that they achieve this property. However, do they indeed converge to the correct distribution? In this paper, we demonstrate that these methods can have a substantial bias in the distribution they sample, even in the limit of vanishing step sizes and at full batch size.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

This conceptual analysis examines the dynamics of data transmission in 5G networks. It addresses various aspects of sending data from cameras and LiDARs installed on a remote-controlled ferry to a land-based control center. The range of topics includes all stages of video and LiDAR data processing from acquisition and encoding to final decoding, all aspects of their transmission and reception via the WebRTC protocol, and all possible types of network problems such as handovers or congestion that could affect the quality of experience for end-users. A series of experiments were conducted to evaluate the key aspects of the data transmission. These include simulation-based reproducible runs and real-world experiments conducted using open-source solutions we developed: "Gymir5G" - an OMNeT++-based 5G simulation and "GstWebRTCApp" - a GStreamer-based application for adaptive control of media streams over the WebRTC protocol. One of the goals of this study is to formulate the bandwidth and latency requirements for reliable real-time communication and to estimate their approximate values. This goal was achieved through simulation-based experiments involving docking maneuvers in the Bay of Kiel, Germany. The final latency for the entire data processing pipeline was also estimated during the real tests. In addition, a series of simulation-based experiments showed the impact of key WebRTC features and demonstrated the effectiveness of the WebRTC protocol, while the conducted video codec comparison showed that the hardware-accelerated H.264 codec is the best. Finally, the research addresses the topic of adaptive communication, where the traditional congestion avoidance and deep reinforcement learning approaches were analyzed. The comparison in a sandbox scenario shows that the AI-based solution outperforms the WebRTC baseline GCC algorithm in terms of data rates, latency, and packet loss.

Graph neural networks are becoming increasingly popular in the field of machine learning due to their unique ability to process data structured in graphs. They have also been applied in safety-critical environments where perturbations inherently occur. However, these perturbations require us to formally verify neural networks before their deployment in safety-critical environments as neural networks are prone to adversarial attacks. While there exists research on the formal verification of neural networks, there is no work verifying the robustness of generic graph convolutional network architectures with uncertainty in the node features and in the graph structure over multiple message-passing steps. This work addresses this research gap by explicitly preserving the non-convex dependencies of all elements in the underlying computations through reachability analysis with (matrix) polynomial zonotopes. We demonstrate our approach on three popular benchmark datasets.

One key aspect differentiating data-driven single- and multi-channel speech enhancement and dereverberation methods is that both the problem formulation and complexity of the solutions are considerably more challenging in the latter case. Additionally, with limited computational resources, it is cumbersome to train models that require the management of larger datasets or those with more complex designs. In this scenario, an unverified hypothesis that single-channel methods can be adapted to multi-channel scenarios simply by processing each channel independently holds significant implications, boosting compatibility between sound scene capture and system input-output formats, while also allowing modern research to focus on other challenging aspects, such as full-bandwidth audio enhancement, competitive noise suppression, and unsupervised learning. This study verifies this hypothesis by comparing the enhancement promoted by a basic single-channel speech enhancement and dereverberation model with two other multi-channel models tailored to separate clean speech from noisy 3D mixes. A direction of arrival estimation model was used to objectively evaluate its capacity to preserve spatial information by comparing the output signals with ground-truth coordinate values. Consequently, a trade-off arises between preserving spatial information with a more straightforward single-channel solution at the cost of obtaining lower gains in intelligibility scores.

As deep neural networks are more commonly deployed in high-stakes domains, their black-box nature makes uncertainty quantification challenging. We investigate the effects of presenting conformal prediction sets--a distribution-free class of methods for generating prediction sets with specified coverage--to express uncertainty in AI-advised decision-making. Through a large online experiment, we compare the utility of conformal prediction sets to displays of Top-1 and Top-k predictions for AI-advised image labeling. In a pre-registered analysis, we find that the utility of prediction sets for accuracy varies with the difficulty of the task: while they result in accuracy on par with or less than Top-1 and Top-k displays for easy images, prediction sets excel at assisting humans in labeling out-of-distribution (OOD) images, especially when the set size is small. Our results empirically pinpoint practical challenges of conformal prediction sets and provide implications on how to incorporate them for real-world decision-making.

It is generally believed that downlink cell-free networks perform best under centralized implementations where the local channel state information (CSI) acquired by the access-points (AP) is forwarded to one or more central processing units (CPU) for the computation of the joint precoders based on global CSI. However, mostly due to limited fronthaul capabilities, this procedure incurs some delay that may lead to partially outdated precoding decisions and hence performance degradation. In some scenarios, this may even lead to worse performance than distributed implementations where the precoders are locally computed by the APs based on partial yet timely local CSI. To address this issue, this study considers the problem of robust precoding design merging the benefits of timely local CSI and delayed global CSI. As main result, we provide a novel distributed precoding design based on the recently proposed team minimum mean-square error method. As a byproduct, we also obtain novel insights related to the AP-CPU functional split problem. Our main conclusion, corroborated by simulations, is that the opportunity of performing some local precoding computations at the APs should not be neglected, even in centralized implementations.

The prevalence of digital media and evolving sociopolitical dynamics have significantly amplified the dissemination of hateful content. Existing studies mainly focus on classifying texts into binary categories, often overlooking the continuous spectrum of offensiveness and hatefulness inherent in the text. In this research, we present an extensive benchmark dataset for Amharic, comprising 8,258 tweets annotated for three distinct tasks: category classification, identification of hate targets, and rating offensiveness and hatefulness intensities. Our study highlights that a considerable majority of tweets belong to the less offensive and less hate intensity levels, underscoring the need for early interventions by stakeholders. The prevalence of ethnic and political hatred targets, with significant overlaps in our dataset, emphasizes the complex relationships within Ethiopia's sociopolitical landscape. We build classification and regression models and investigate the efficacy of models in handling these tasks. Our results reveal that hate and offensive speech can not be addressed by a simplistic binary classification, instead manifesting as variables across a continuous range of values. The Afro-XLMR-large model exhibits the best performances achieving F1-scores of 75.30%, 70.59%, and 29.42% for the category, target, and regression tasks, respectively. The 80.22% correlation coefficient of the Afro-XLMR-large model indicates strong alignments.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司