We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
We investigate unbiased high-dimensional mean estimators in differential privacy. We consider differentially private mechanisms whose expected output equals the mean of the input dataset, for every dataset drawn from a fixed convex domain $K$ in $\mathbb{R}^d$. In the setting of concentrated differential privacy, we show that, for every input such an unbiased mean estimator introduces approximately at least as much error as a mechanism that adds Gaussian noise with a carefully chosen covariance. This is true when the error is measured with respect to $\ell_p$ error for any $p \ge 2$. We extend this result to local differential privacy, and to approximate differential privacy, but for the latter the error lower bound holds either for a dataset or for a neighboring dataset. We also extend our results to mechanisms that take i.i.d.~samples from a distribution over $K$ and are unbiased with respect to the mean of the distribution.
This paper considers the problem of estimating the distribution of a response variable conditioned on observing some factors. Existing approaches are often deficient in one of the qualities of flexibility, interpretability and tractability. We propose a model that possesses these desirable properties. The proposed model, analogous to classic mixture regression models, models the conditional quantile function as a mixture (weighted sum) of basis quantile functions, with the weight of each basis quantile function being a function of the factors. The model can approximate any bounded conditional quantile model. It has a factor model structure with a closed-form expression. The calibration problem is formulated as convex optimization, which can be viewed as conducting quantile regressions of all confidence levels simultaneously and does not suffer from quantile crossing by design. The calibration is equivalent to minimization of Continuous Probability Ranked Score (CRPS). We prove the asymptotic normality of the estimator. Additionally, based on risk quadrangle framework, we generalize the proposed approach to conditional distributions defined by Conditional Value-at-Risk (CVaR), expectile and other functions of uncertainty measures. Based on CP decomposition of tensors, we propose a dimensionality reduction method by reducing the rank of the parameter tensor and propose an alternating algorithm for estimating the parameter tensor. Our numerical experiments demonstrate the efficiency of the approach.
Estimating the Shannon entropy of a discrete distribution from which we have only observed a small sample is challenging. Estimating other information-theoretic metrics, such as the Kullback-Leibler divergence between two sparsely sampled discrete distributions, is even harder. Existing approaches to address these problems have shortcomings: they are biased, heuristic, work only for some distributions, and/or cannot be applied to all information-theoretic metrics. Here, we propose a fast, semi-analytical estimator for sparsely sampled distributions that is efficient, precise, and general. Its derivation is grounded in probabilistic considerations and uses a hierarchical Bayesian approach to extract as much information as possible from the few observations available. Our approach provides estimates of the Shannon entropy with precision at least comparable to the state of the art, and most often better. It can also be used to obtain accurate estimates of any other information-theoretic metric, including the notoriously challenging Kullback-Leibler divergence. Here, again, our approach performs consistently better than existing estimators.
We consider the estimation of two-sample integral functionals, of the type that occur naturally, for example, when the object of interest is a divergence between unknown probability densities. Our first main result is that, in wide generality, a weighted nearest neighbour estimator is efficient, in the sense of achieving the local asymptotic minimax lower bound. Moreover, we also prove a corresponding central limit theorem, which facilitates the construction of asymptotically valid confidence intervals for the functional, having asymptotically minimal width. One interesting consequence of our results is the discovery that, for certain functionals, the worst-case performance of our estimator may improve on that of the natural `oracle' estimator, which is given access to the values of the unknown densities at the observations.
Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical studies. Experimental evidence in previous works suggests a strong interplay between the heaviness of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically, several works have made strong topological and statistical assumptions to link the generalization error to heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic relationship between the generalization error and heavy tails, which is more pertinent to the reported empirical observations. While these bounds do not require additional topological assumptions given that SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to simple quadratic problems. In this paper, we build on this line of research and develop generalization bounds for a more general class of objective functions, which includes non-convex functions as well. Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss functions.
Recent progress in empirical and certified robustness promises to deliver reliable and deployable Deep Neural Networks (DNNs). Despite that success, most existing evaluations of DNN robustness have been done on images sampled from the same distribution on which the model was trained. However, in the real world, DNNs may be deployed in dynamic environments that exhibit significant distribution shifts. In this work, we take a first step towards thoroughly investigating the interplay between empirical and certified adversarial robustness on one hand and domain generalization on another. To do so, we train robust models on multiple domains and evaluate their accuracy and robustness on an unseen domain. We observe that: (1) both empirical and certified robustness generalize to unseen domains, and (2) the level of generalizability does not correlate well with input visual similarity, measured by the FID between source and target domains. We also extend our study to cover a real-world medical application, in which adversarial augmentation significantly boosts the generalization of robustness with minimal effect on clean data accuracy.
Among the reasons hindering reinforcement learning (RL) applications to real-world problems, two factors are critical: limited data and the mismatch between the testing environment (real environment in which the policy is deployed) and the training environment (e.g., a simulator). This paper attempts to address these issues simultaneously with distributionally robust offline RL, where we learn a distributionally robust policy using historical data obtained from the source environment by optimizing against a worst-case perturbation thereof. In particular, we move beyond tabular settings and consider linear function approximation. More specifically, we consider two settings, one where the dataset is well-explored and the other where the dataset has sufficient coverage of the optimal policy. We propose two algorithms~-- one for each of the two settings~-- that achieve error bounds $\tilde{O}(d^{1/2}/N^{1/2})$ and $\tilde{O}(d^{3/2}/N^{1/2})$ respectively, where $d$ is the dimension in the linear function approximation and $N$ is the number of trajectories in the dataset. To the best of our knowledge, they provide the first non-asymptotic results of the sample complexity in this setting. Diverse experiments are conducted to demonstrate our theoretical findings, showing the superiority of our algorithm against the non-robust one.
In this study, we address the problem of optimizing multi-output black-box functions under uncertain environments. We formulate this problem as the estimation of the uncertain Pareto-frontier (PF) of a multi-output Bayesian surrogate model with two types of variables: design variables and environmental variables. We consider this problem within the context of Bayesian optimization (BO) under uncertain environments, where the design variables are controllable, whereas the environmental variables are assumed to be random and not controllable. The challenge of this problem is to robustly estimate the PF when the distribution of the environmental variables is unknown, that is, to estimate the PF when the environmental variables are generated from the worst possible distribution. We propose a method for solving the BO problem by appropriately incorporating the uncertainties of the environmental variables and their probability distribution. We demonstrate that the proposed method can find an arbitrarily accurate PF with high probability in a finite number of iterations. We also evaluate the performance of the proposed method through numerical experiments.
We study deviation of U-statistics when samples have heavy-tailed distribution so the kernel of the U-statistic does not have bounded exponential moments at any positive point. We obtain an exponential upper bound for the tail of the U-statistics which clearly denotes two regions of tail decay, the first is a Gaussian decay and the second behaves like the tail of the kernel. For several common U-statistics, we also show the upper bound has the right rate of decay as well as sharp constants by obtaining rough logarithmic limits which in turn can be used to develop LDP for U-statistics. In spite of usual LDP results in the literature, processes we consider in this work have LDP speed slower than their sample size $n$.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.