亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Noise-shaping quantization techniques are widely used for converting bandlimited signals from the analog to the digital domain. They work by "shaping" the quantization noise so that it falls close to the reconstruction operator's null space. We investigate the compatibility of two such schemes, specifically $\Sigma\Delta$ quantization and distributed noise-shaping quantization, with random samples of bandlimited functions. Let $f$ be a real-valued $\pi$-bandlimited function. Suppose $R>1$ is a real number and assume that $\{x_i\}_{i=1}^m$ is a sequence of i.i.d random variables uniformly distributed on $[-\tilde{R},\tilde{R}]$, where $\tilde{R}>R$ is appropriately chosen. We show that by using a noise-shaping quantizer to quantize the values of $f$ at $\{x_i\}_{i=1}^m$, a function $f^{\sharp}$ can be reconstructed from these quantized values such that $\|f-f^{\sharp}\|_{L^2[-R, R]}$ decays with high probability as $m$ and $\tilde{R}$ increase. We emphasize that the sample points $\{x_i\}_{i=1}^m$ are completely random, i.e., they have no predefined structure, which makes our findings the first of their kind.

相關內容

Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models.

The distributed task allocation problem, as one of the most interesting distributed optimization challenges, has received considerable research attention recently. Previous works mainly focused on the task allocation problem in a population of individuals, where there are no constraints for affording task amounts. The latter condition, however, cannot always be hold. In this paper, we study the task allocation problem with constraints of task allocation in a game-theoretical framework. We assume that each individual can afford different amounts of task and the cost function is convex. To investigate the problem in the framework of population games, we construct a potential game and calculate the fitness function for each individual. We prove that when the Nash equilibrium point in the potential game is in the feasible solutions for the limited task allocation problem, the Nash equilibrium point is the unique globally optimal solution. Otherwise, we also derive analytically the unique globally optimal solution. In addition, in order to confirm our theoretical results, we consider the exponential and quadratic forms of cost function for each agent. Two algorithms with the mentioned representative cost functions are proposed to numerically seek the optimal solution to the limited task problems. We further perform Monte Carlo simulations which provide agreeing results with our analytical calculations.

Challenging combinatorial optimization problems are ubiquitous in science and engineering. Several quantum methods for optimization have recently been developed, in different settings including both exact and approximate solvers. Addressing this field of research, this manuscript has three distinct purposes. First, we present an intuitive method for synthesizing and analyzing discrete (i.e., integer-based) optimization problems, wherein the problem and corresponding algorithmic primitives are expressed using a discrete quantum intermediate representation (DQIR) that is encoding-independent. This compact representation often allows for more efficient problem compilation, automated analyses of different encoding choices, easier interpretability, more complex runtime procedures, and richer programmability, as compared to previous approaches, which we demonstrate with a number of examples. Second, we perform numerical studies comparing several qubit encodings; the results exhibit a number of preliminary trends that help guide the choice of encoding for a particular set of hardware and a particular problem and algorithm. Our study includes problems related to graph coloring, the traveling salesperson problem, factory/machine scheduling, financial portfolio rebalancing, and integer linear programming. Third, we design low-depth graph-derived partial mixers (GDPMs) up to 16-level quantum variables, demonstrating that compact (binary) encodings are more amenable to QAOA than previously understood. We expect this toolkit of programming abstractions and low-level building blocks to aid in designing quantum algorithms for discrete combinatorial problems.

A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.

Fixed-point iteration algorithms like RTA (response time analysis) and QPA (quick processor-demand analysis) are arguably the most popular ways of solving schedulability problems for preemptive uniprocessor FP (fixed-priority) and EDF (earliest-deadline-first) systems. Several IP (integer program) formulations have also been proposed for these problems, but it is unclear whether the algorithms for solving these formulations are related to RTA and QPA. By discovering connections between the problems and the algorithms, we show that RTA and QPA are, in fact, suboptimal cutting-plane algorithms for specific IP formulations of FP and EDF schedulability, where optimality is defined with respect to convergence rate. We propose optimal cutting-plane algorithms for these IP formulations. We compare the new algorithms with RTA and QPA on large collections of synthetic systems to gauge the improvement in convergence rates and running times.

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.

In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the stepsize but a proper variance reduced version is missing. In this work, we propose the first study of variance reduction techniques for stochastic proximal point algorithms. We introduce a stochastic proximal version of SVRG, SAGA, and some of their variants for smooth and convex functions. We provide several convergence results for the iterates and the objective function values. In addition, under the Polyak-{\L}ojasiewicz (PL) condition, we obtain linear convergence rates for the iterates and the function values. Our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts, especially about the stability with respect to the choice of the step size.

Optimal transport has gained much attention in image processing field, such as computer vision, image interpolation and medical image registration. Recently, Bredies et al. (ESAIM:M2AN 54:2351-2382, 2020) and Schmitzer et al. (IEEE T MED IMAGING 39:1626-1635, 2019) established the framework of optimal transport regularization for dynamic inverse problems. In this paper, we incorporate Wasserstein distance, together with total variation, into static inverse problems as a prior regularization. The Wasserstein distance formulated by Benamou-Brenier energy measures the similarity between the given template and the reconstructed image. Also, we analyze the existence of solutions of such variational problem in Radon measure space. Moreover, the first-order primal-dual algorithm is constructed for solving this general imaging problem in a specific grid strategy. Finally, numerical experiments for undersampled MRI reconstruction are presented which show that our proposed model can recover images well with high quality and structure preservation.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司