We consider the problem of dynamically maintaining the convex hull of a set $S$ of points in the plane under the following special sequence of insertions and deletions (called {\em window-sliding updates}): insert a point to the right of all points of $S$ and delete the leftmost point of $S$. We propose an $O(|S|)$-space data structure that can handle each update in $O(1)$ amortized time, such that standard binary-search-based queries on the convex hull of $S$ can be answered in $O(\log h)$ time, where $h$ is the number of vertices of the convex hull of $S$, and the convex hull itself can be output in $O(h)$ time.
This paper provides norm-based generalization bounds for the Transformer architecture that do not depend on the input sequence length. We employ a covering number based approach to prove our bounds. We use three novel covering number bounds for the function class of bounded linear transformations to upper bound the Rademacher complexity of the Transformer. Furthermore, we show this generalization bound applies to the common Transformer training technique of masking and then predicting the masked word. We also run a simulated study on a sparse majority data set that empirically validates our theoretical findings.
We propose a differentiable vertex fitting algorithm that can be used for secondary vertex fitting, and that can be seamlessly integrated into neural networks for jet flavour tagging. Vertex fitting is formulated as an optimization problem where gradients of the optimized solution vertex are defined through implicit differentiation and can be passed to upstream or downstream neural network components for network training. More broadly, this is an application of differentiable programming to integrate physics knowledge into neural network models in high energy physics. We demonstrate how differentiable secondary vertex fitting can be integrated into larger transformer-based models for flavour tagging and improve heavy flavour jet classification.
Existing sentence ordering approaches generally employ encoder-decoder frameworks with the pointer net to recover the coherence by recurrently predicting each sentence step-by-step. Such an autoregressive manner only leverages unilateral dependencies during decoding and cannot fully explore the semantic dependency between sentences for ordering. To overcome these limitations, in this paper, we propose a novel Non-Autoregressive Ordering Network, dubbed \textit{NAON}, which explores bilateral dependencies between sentences and predicts the sentence for each position in parallel. We claim that the non-autoregressive manner is not just applicable but also particularly suitable to the sentence ordering task because of two peculiar characteristics of the task: 1) each generation target is in deterministic length, and 2) the sentences and positions should match exclusively. Furthermore, to address the repetition issue of the naive non-autoregressive Transformer, we introduce an exclusive loss to constrain the exclusiveness between positions and sentences. To verify the effectiveness of the proposed model, we conduct extensive experiments on several common-used datasets and the experimental results show that our method outperforms all the autoregressive approaches and yields competitive performance compared with the state-of-the-arts. The codes are available at: \url{//github.com/steven640pixel/nonautoregressive-sentence-ordering}.
Modern detection transformers (DETRs) use a set of object queries to predict a list of bounding boxes, sort them by their classification confidence scores, and select the top-ranked predictions as the final detection results for the given input image. A highly performant object detector requires accurate ranking for the bounding box predictions. For DETR-based detectors, the top-ranked bounding boxes suffer from less accurate localization quality due to the misalignment between classification scores and localization accuracy, thus impeding the construction of high-quality detectors. In this work, we introduce a simple and highly performant DETR-based object detector by proposing a series of rank-oriented designs, combinedly called Rank-DETR. Our key contributions include: (i) a rank-oriented architecture design that can prompt positive predictions and suppress the negative ones to ensure lower false positive rates, as well as (ii) a rank-oriented loss function and matching cost design that prioritizes predictions of more accurate localization accuracy during ranking to boost the AP under high IoU thresholds. We apply our method to improve the recent SOTA methods (e.g., H-DETR and DINO-DETR) and report strong COCO object detection results when using different backbones such as ResNet-$50$, Swin-T, and Swin-L, demonstrating the effectiveness of our approach. Code is available at \url{//github.com/LeapLabTHU/Rank-DETR}.
Consider the following problem: given a few demonstrations of a task across a few different objects, how can a robot learn to perform that same task on new, previously unseen objects? This is challenging because the large variety of objects within a class makes it difficult to infer the task-relevant relationship between the new objects and the objects in the demonstrations. We address this by formulating imitation learning as a conditional alignment problem between graph representations of objects. Consequently, we show that this conditioning allows for in-context learning, where a robot can perform a task on a set of new objects immediately after the demonstrations, without any prior knowledge about the object class or any further training. In our experiments, we explore and validate our design choices, and we show that our method is highly effective for few-shot learning of several real-world, everyday tasks, whilst outperforming baselines. Videos are available on our project webpage at //www.robot-learning.uk/implicit-graph-alignment.
The mathematical theory of a novel variational approximation scheme for general second and fourth order partial differential equations \begin{equation}\label{eq: A} \partial_t u - \nabla\cdot\Big(u\nabla\frac{\delta\phi}{\delta u}(u)\Big|\nabla\frac{\delta\phi}{\delta u}(u)\Big|^{q-2}\Big) \ = \ 0, \quad\quad u\geq0, \end{equation} $q\in(1, +\infty)$, is developed.
The ability to measure the satisfaction of (groups of) voters is a crucial prerequisite for formulating proportionality axioms in approval-based participatory budgeting elections. Two common - but very different - ways to measure the satisfaction of a voter consider (i) the number of approved projects and (ii) the total cost of approved projects, respectively. In general, it is difficult to decide which measure of satisfaction best reflects the voters' true utilities. In this paper, we study proportionality axioms with respect to large classes of approval-based satisfaction functions. We establish logical implications among our axioms and related notions from the literature, and we ask whether outcomes can be achieved that are proportional with respect to more than one satisfaction function. We show that this is impossible for the two commonly used satisfaction functions when considering proportionality notions based on extended justified representation, but achievable for a notion based on proportional justified representation. For the latter result, we introduce a strengthening of priceability and show that it is satisfied by several polynomial-time computable rules, including the Method of Equal Shares and Phragm\`en's sequential rule.
Variational flows allow practitioners to learn complex continuous distributions, but approximating discrete distributions remains a challenge. Current methodologies typically embed the discrete target in a continuous space - usually via continuous relaxation or dequantization - and then apply a continuous flow. These approaches involve a surrogate target that may not capture the original discrete target, might have biased or unstable gradients, and can create a difficult optimization problem. In this work, we develop a variational flow family for discrete distributions without any continuous embedding. First, we develop a measure-preserving and discrete (MAD) invertible map that leaves the discrete target invariant, and then create a mixed variational flow (MAD Mix) based on that map. Our family provides access to i.i.d. sampling and density evaluation with virtually no tuning effort. We also develop an extension to MAD Mix that handles joint discrete and continuous models. Our experiments suggest that MAD Mix produces more reliable approximations than continuous-embedding flows while being significantly faster to train.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.