亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research contributes to the security design of an advanced smart drone swarm network based on a variant of the Blockchain Governance Game (BGG), which is the theoretical game model to predict the moments of security actions before attacks, and the Strategic Alliance for Blockchain Governance Game (SABGG), which is one of the BGG variants which has been adapted to construct the best strategies to take preliminary actions based on strategic alliance for protecting smart drones in a blockchain-based swarm network. Smart drones are artificial intelligence (AI)-enabled drones which are capable of being operated autonomously without having any command center. Analytically tractable solutions from the SABGG allow us to estimate the moments of taking preliminary actions by delivering the optimal accountability of drones for preventing attacks. This advanced secured swarm network within AI-enabled drones is designed by adapting the SABGG model. This research helps users to develop a new network-architecture-level security of a smart drone swarm which is based on a decentralized network.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

As algorithms become an influential component of government decision-making around the world, policymakers have debated how governments can attain the benefits of algorithms while preventing the harms of algorithms. One mechanism that has become a centerpiece of global efforts to regulate government algorithms is to require human oversight of algorithmic decisions. Despite the widespread turn to human oversight, these policies rest on an uninterrogated assumption: that people are able to effectively oversee algorithmic decision-making. In this article, I survey 41 policies that prescribe human oversight of government algorithms and find that they suffer from two significant flaws. First, evidence suggests that people are unable to perform the desired oversight functions. Second, as a result of the first flaw, human oversight policies legitimize government uses of faulty and controversial algorithms without addressing the fundamental issues with these tools. Thus, rather than protect against the potential harms of algorithmic decision-making in government, human oversight policies provide a false sense of security in adopting algorithms and enable vendors and agencies to shirk accountability for algorithmic harms. In light of these flaws, I propose a shift from human oversight to institutional oversight as the central mechanism for regulating government algorithms. This institutional approach operates in two stages. First, agencies must justify that it is appropriate to incorporate an algorithm into decision-making and that any proposed forms of human oversight are supported by empirical evidence. Second, these justifications must receive democratic public review and approval before the agency can adopt the algorithm.

Metaverse is expected to emerge as a new paradigm for the next-generation Internet, providing fully immersive and personalised experiences to socialize, work, and play in self-sustaining and hyper-spatio-temporal virtual world(s). The advancements in different technologies like augmented reality, virtual reality, extended reality (XR), artificial intelligence (AI), and 5G/6G communication will be the key enablers behind the realization of AI-XR metaverse applications. While AI itself has many potential applications in the aforementioned technologies (e.g., avatar generation, network optimization, etc.), ensuring the security of AI in critical applications like AI-XR metaverse applications is profoundly crucial to avoid undesirable actions that could undermine users' privacy and safety, consequently putting their lives in danger. To this end, we attempt to analyze the security, privacy, and trustworthiness aspects associated with the use of various AI techniques in AI-XR metaverse applications. Specifically, we discuss numerous such challenges and present a taxonomy of potential solutions that could be leveraged to develop secure, private, robust, and trustworthy AI-XR applications. To highlight the real implications of AI-associated adversarial threats, we designed a metaverse-specific case study and analyzed it through the adversarial lens. Finally, we elaborate upon various open issues that require further research interest from the community.

Blockchain and distributed ledger technologies are gaining the interest of the academy, companies, and institutions. Nonetheless, the path toward blockchain adoption is not straightforward, as blockchain is a complex technology that requires revisiting the standard way of addressing problems and tackling them from a decentralized perspective. Thus, decision-makers adopt blockchain technology for the wrong reasons or prefer it to more suitable ones. This work presents a decision framework for blockchain adoption to help decision-makers decide whether blockchain is applicable, valuable, and preferable to other technologies. In particular, The decision framework is composed of a small set of questions that can be answered from a managerial standpoint and that do not require a deep technical knowledge of blockchain-related topics.

The Smart Grid (SG) is a cornerstone of modern society, providing the energy required to sustain billions of lives and thousands of industries. Unfortunately, as one of the most critical infrastructures of our World, the SG is an attractive target for attackers. The problem is aggravated by the increasing adoption of digitalisation, which further increases the SG's exposure to cyberthreats. Successful exploitation of such exposure leads to entire countries being paralysed, which is an unacceptable -- but ultimately inescapable -- risk. This paper aims to mitigate this risk by elucidating the perspective of real practitioners on the cybersecurity of the SG. We interviewed 18 entities, operating in diverse countries in Europe and covering all domains of the SG -- from energy generation, to its delivery. Our analysis highlights a stark contrast between (a)research and practice, but also between (b) public and private entities. For instance: some threats appear to be much less dangerous than what is claimed in related papers; some technological paradigms have dubious utility for practitioners, but are actively promoted by literature; finally, practitioners may either under- or over-estimate their own cybersecurity capabilities. We derive four takeaways that enable future endeavours to improve the overall cybersecurity in the SG. We conjecture that most of the problems are due to an improper communication between researchers, practitioners and regulatory bodies -- which, despite sharing a common goal, tend to neglect the viewpoint of the other `spheres'.

Intelligence agents and multi-agent systems play important roles in scenes like the control system of grouped drones, and multi-agent navigation and obstacle avoidance which is the foundational function of advanced application has great importance. In multi-agent navigation and obstacle avoidance tasks, the decision-making interactions and dynamic changes of agents are difficult for traditional route planning algorithms or reinforcement learning algorithms with the increased complexity of the environment. The classical multi-agent reinforcement learning algorithm, Multi-agent deep deterministic policy gradient(MADDPG), solved precedent algorithms' problems of having unstationary training process and unable to deal with environment randomness. However, MADDPG ignored the temporal message hidden beneath agents' interaction with the environment. Besides, due to its CTDE technique which let each agent's critic network to calculate over all agents' action and the whole environment information, it lacks ability to scale to larger amount of agents. To deal with MADDPG's ignorance of the temporal information of the data, this article proposes a new algorithm called MADDPG-LSTMactor, which combines MADDPG with Long short term memory (LSTM). By using agent's observations of continuous timesteps as the input of its policy network, it allows the LSTM layer to process the hidden temporal message. Experimental result demonstrated that this algorithm had better performance in scenarios where the amount of agents is small. Besides, to solve MADDPG's drawback of not being efficient in scenarios where agents are too many, this article puts forward a light-weight MADDPG (MADDPG-L) algorithm, which simplifies the input of critic network. The result of experiments showed that this algorithm had better performance than MADDPG when the amount of agents was large.

Financial fraud cases are on the rise even with the current technological advancements. Due to the lack of inter-organization synergy and because of privacy concerns, authentic financial transaction data is rarely available. On the other hand, data-driven technologies like machine learning need authentic data to perform precisely in real-world systems. This study proposes a blockchain and smart contract-based approach to achieve robust Machine Learning (ML) algorithm for e-commerce fraud detection by facilitating inter-organizational collaboration. The proposed method uses blockchain to secure the privacy of the data. Smart contract deployed inside the network fully automates the system. An ML model is incrementally upgraded from collaborative data provided by the organizations connected to the blockchain. To incentivize the organizations, we have introduced an incentive mechanism that is adaptive to the difficulty level in updating a model. The organizations receive incentives based on the difficulty faced in updating the ML model. A mining criterion has been proposed to mine the block efficiently. And finally, the blockchain network istested under different difficulty levels and under different volumes of data to test its efficiency. The model achieved 98.93% testing accuracy and 98.22% Fbeta score (recall-biased f measure) over eight incremental updates. Our experiment shows that both data volume and difficulty level of blockchain impacts the mining time. For difficulty level less than five, mining time and difficulty level has a positive correlation. For difficulty level two and three, less than a second is required to mine a block in our system. Difficulty level five poses much more difficulties to mine the blocks.

Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.

Users today expect more security from services that handle their data. In addition to traditional data privacy and integrity requirements, they expect transparency, i.e., that the service's processing of the data is verifiable by users and trusted auditors. Our goal is to build a multi-user system that provides data privacy, integrity, and transparency for a large number of operations, while achieving practical performance. To this end, we first identify the limitations of existing approaches that use authenticated data structures. We find that they fall into two categories: 1) those that hide each user's data from other users, but have a limited range of verifiable operations (e.g., CONIKS, Merkle2, and Proofs of Liabilities), and 2) those that support a wide range of verifiable operations, but make all data publicly visible (e.g., IntegriDB and FalconDB). We then present TAP to address the above limitations. The key component of TAP is a novel tree data structure that supports efficient result verification, and relies on independent audits that use zero-knowledge range proofs to show that the tree is constructed correctly without revealing user data. TAP supports a broad range of verifiable operations, including quantiles and sample standard deviations. We conduct a comprehensive evaluation of TAP, and compare it against two state-of-the-art baselines, namely IntegriDB and Merkle2, showing that the system is practical at scale.

Recent years have seen the emergence of decentralized wireless networks consisting of nodes hosted by many individuals and small enterprises, reawakening the decades-old dream of open networking. These networks have been deployed in an organic, distributed manner and are driven by new economic models resting on tokenized incentives. A critical requirement for the incentives to scale is the ability to prove network performance in a decentralized trustfree manner, i.e., a Byzantine fault tolerant network telemetry system. In this paper, we present a Proof of Backhaul (PoB) protocol which measures the bandwidth of the (broadband) backhaul link of a wireless access point, termed prover, in a decentralized and trustfree manner. In particular, our proposed protocol is the first one to satisfy the following two properties: (1) Trustfree. Bandwidth measurement is secure against Byzantine attacks by collaborations of challenge servers and the prover. (2) Open. The barrier-to-entry for being a challenge server is low; there is no requirement of having a low latency and high throughput path to the measured link. At a high-level, our protocol aggregates the challenge traffic from multiple challenge servers and uses cryptographic primitives to ensure that a subset of challengers or, even challengers and provers, cannot maliciously modify results in their favor. A formal security model allows us to establish guarantees of accurate bandwidth measurement as a function of the fraction of malicious actors. Our evaluation shows that our PoB protocol can verify backhaul bandwidth of up to 1000 Mbps with less than 8% error using measurements lasting only 100 ms. The measurement accuracy is not affected in the presence of corrupted challengers. Importantly, the basic verification protocol lends itself to a minor modification that can measure available bandwidth even in the presence of cross-traffic.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

北京阿比特科技有限公司