亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a simple yet effective provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning. Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch. The individual-level weight of sampled data is systematically proportional to the exponential of a scaled loss value of the data, where the scaling factor is interpreted as the regularization parameter in the framework of distributionally robust optimization (DRO). Depending on whether the scaling factor is positive or negative, ABSGD is guaranteed to converge to a stationary point of an information-regularized min-max or min-min DRO problem, respectively. Compared with existing class-level weighting schemes, our method can capture the diversity between individual examples within each class. Compared with existing individual-level weighting methods using meta-learning that require three backward propagations for computing mini-batch stochastic gradients, our method is more efficient with only one backward propagation at each iteration as in standard deep learning methods. ABSGD is flexible enough to combine with other robust losses without any additional cost. Our empirical studies on several benchmark datasets demonstrate the effectiveness of the proposed method.\footnote{Code is available at:\url{//github.com/qiqi-helloworld/ABSGD/}}

相關內容

We prove a non-asymptotic distribution-independent lower bound for the expected mean squared generalization error caused by label noise in ridgeless linear regression. Our lower bound generalizes a similar known result to the overparameterized (interpolating) regime. In contrast to most previous works, our analysis applies to a broad class of input distributions with almost surely full-rank feature matrices, which allows us to cover various types of deterministic or random feature maps. Our lower bound is asymptotically sharp and implies that in the presence of label noise, ridgeless linear regression does not perform well around the interpolation threshold for any of these feature maps. We analyze the imposed assumptions in detail and provide a theory for analytic (random) feature maps. Using this theory, we can show that our assumptions are satisfied for input distributions with a (Lebesgue) density and feature maps given by random deep neural networks with analytic activation functions like sigmoid, tanh, softplus or GELU. As further examples, we show that feature maps from random Fourier features and polynomial kernels also satisfy our assumptions. We complement our theory with further experimental and analytic results.

We consider the problem of finite-time identification of linear dynamical systems from $T$ samples of a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm that depend on the local size of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of these results, we instantiate them for three examples, namely when (i) $A^*$ is sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball; (ii) $\mathcal{K}$ is a subspace; (iii) $\mathcal{K}$ consists of matrices each of which is formed by sampling a bivariate convex function on a uniform $n \times n$ grid (convex regression). In all these situations, we show that $A^*$ can be reliably estimated for values of $T$ much smaller than what is needed for the unconstrained setting.

The stochastic compositional minimax problem has attracted a surge of attention in recent years since it covers many emerging machine learning models. Meanwhile, due to the emergence of distributed data, optimizing this kind of problem under the decentralized setting becomes badly needed. However, the compositional structure in the loss function brings unique challenges to designing efficient decentralized optimization algorithms. In particular, our study shows that the standard gossip communication strategy cannot achieve linear speedup for decentralized compositional minimax problems due to the large consensus error about the inner-level function. To address this issue, we developed a novel decentralized stochastic compositional gradient descent ascent with momentum algorithm to reduce the consensus error in the inner-level function. As such, our theoretical results demonstrate that it is able to achieve linear speedup with respect to the number of workers. We believe this novel algorithmic design could benefit the development of decentralized compositional optimization. Finally, we applied our methods to the imbalanced classification problem. The extensive experimental results provide evidence for the effectiveness of our algorithm.

Finding a solution to the linear system $Ax = b$ with various minimization properties arises from many engineering and computer science applications, including compressed sensing, image processing, and machine learning. In the age of big data, the scalability of stochastic optimization algorithms has made it increasingly important to solve problems of unprecedented sizes. This paper focuses on the problem of minimizing a strongly convex objective function subject to linearly constraints. We consider the dual formulation of this problem and adopt the stochastic coordinate descent to solve it. The proposed algorithmic framework, called fast stochastic dual coordinate descent, utilizes an adaptive variation of Polyak's heavy ball momentum and user-defined distributions for sampling. Our adaptive heavy ball momentum technique can efficiently update the parameters by using iterative information, overcoming the limitation of the heavy ball momentum method where prior knowledge of certain parameters, such as singular values of a matrix, is required. We prove that, under strongly admissible of the objective function, the propose method converges linearly in expectation. By varying the sampling matrix, we recover a comprehensive array of well-known algorithms as special cases, including the randomized sparse Kaczmarz method, the randomized regularized Kaczmarz method, the linearized Bregman iteration, and a variant of the conjugate gradient (CG) method. Numerical experiments are provided to confirm our results.

In high-dimensional generalized linear models, it is crucial to identify a sparse model that adequately accounts for response variation. Although the best subset section has been widely regarded as the Holy Grail of problems of this type, achieving either computational efficiency or statistical guarantees is challenging. In this article, we intend to surmount this obstacle by utilizing a fast algorithm to select the best subset with high certainty. We proposed and illustrated an algorithm for best subset recovery in regularity conditions. Under mild conditions, the computational complexity of our algorithm scales polynomially with sample size and dimension. In addition to demonstrating the statistical properties of our method, extensive numerical experiments reveal that it outperforms existing methods for variable selection and coefficient estimation. The runtime analysis shows that our implementation achieves approximately a fourfold speedup compared to popular variable selection toolkits like glmnet and ncvreg.

We study parametric inference for hypo-elliptic Stochastic Differential Equations (SDEs). Existing research focuses on a particular class of hypo-elliptic SDEs, with components split into `rough'/`smooth' and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g.~the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general `recipe' for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.

This paper proposes a non-centered parameterization based infinite-dimensional mean-field variational inference (NCP-iMFVI) approach for solving the hierarchical Bayesian inverse problems. This method can generate available estimates from the approximated posterior distribution efficiently. To avoid the mutually singular obstacle that occurred in the infinite-dimensional hierarchical approach, we propose a rigorous theory of the non-centered variational Bayesian approach. Since the non-centered parameterization weakens the connection between the parameter and the hyper-parameter, we can introduce the hyper-parameter to all terms of the eigendecomposition of the prior covariance operator. We also show the relationships between the NCP-iMFVI and infinite-dimensional hierarchical approaches with centered parameterization. The proposed algorithm is applied to three inverse problems governed by the simple smooth equation, the Helmholtz equation, and the steady-state Darcy flow equation. Numerical results confirm our theoretical findings, illustrate the efficiency of solving the iMFVI problem formulated by large-scale linear and nonlinear statistical inverse problems, and verify the mesh-independent property.

Moving average processes driven by exponential-tailed L\'evy noise are important extensions of their Gaussian counterparts in order to capture deviations from Gaussianity, more flexible dependence structures, and sample paths with jumps. Popular examples include non-Gaussian Ornstein--Uhlenbeck processes and type G Mat\'ern stochastic partial differential equation random fields. This paper is concerned with the open problem of determining their extremal dependence structure. We leverage the fact that such processes admit approximations on grids or triangulations that are used in practice for efficient simulations and inference. These approximations can be expressed as special cases of a class of linear transformations of independent, exponential-tailed random variables, that bridge asymptotic dependence and independence in a novel, tractable way. This result is of independent interest since models that can capture both extremal dependence regimes are scarce and the construction of such flexible models is an active area of research. This new fundamental result allows us to show that the integral approximation of general moving average processes with exponential-tailed L\'evy noise is asymptotically independent when the mesh is fine enough. Under mild assumptions on the kernel function we also derive the limiting residual tail dependence function. For the popular exponential-tailed Ornstein--Uhlenbeck process we prove that it is asymptotically independent, but with a different residual tail dependence function than its Gaussian counterpart. Our results are illustrated through simulation studies.

Momentum is known to accelerate the convergence of gradient descent in strongly convex settings without stochastic gradient noise. In stochastic optimization, such as training neural networks, folklore suggests that momentum may help deep learning optimization by reducing the variance of the stochastic gradient update, but previous theoretical analyses do not find momentum to offer any provable acceleration. Theoretical results in this paper clarify the role of momentum in stochastic settings where the learning rate is small and gradient noise is the dominant source of instability, suggesting that SGD with and without momentum behave similarly in the short and long time horizons. Experiments show that momentum indeed has limited benefits for both optimization and generalization in practical training regimes where the optimal learning rate is not very large, including small- to medium-batch training from scratch on ImageNet and fine-tuning language models on downstream tasks.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司