亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The research community has traditionally shown a keen interest in emotion modeling, with a notable emphasis on the detection aspect. In contrast, the exploration of emotion generation has received less attention.This study delves into an existing state-of-the-art emotional chatbot, EmoBot, designed for generating emotions in general-purpose conversations. This research involves a comprehensive examination, including a survey to evaluate EmoBot's proficiency in key dimensions like usability, accuracy, and overall user satisfaction, with a specific focus on fault tolerance. By closely examining the chatbot's operations, we identified some noteworthy shortcomings in the existing model. We propose some solutions designed to address and overcome the identified issues.

相關內容

Chatbot,聊(liao)天機器人。 chatbot是場交(jiao)互革命,也是一個多技(ji)術融合的(de)平臺。上(shang)圖(tu)給出了構建一個chatbot需要具(ju)備(bei)的(de)組件,簡單地(di)說chatbot = NLU(Natural Language Understanding) + NLG(Natural Language Generation)。

知識薈萃

精品入(ru)門和進階教程、論文和代(dai)碼整(zheng)理等

更多

查看相關VIP內容、論文、資(zi)訊(xun)等

Communities and groups often need to make decisions grounded by social norms and preferences, such as when moderating content or providing judgments for aligning AI systems. Prevailing approaches to provide this grounding have primarily centered around constructing high-level guidelines and criteria, similar to legal ``constitutions''. However, it can be challenging to specify social norms and preferences consistently and accurately through constitutions alone. In this work, we take inspiration from legal systems and introduce ``case law grounding'' (CLG) -- a novel approach for grounding decision-making that uses past cases and decisions (precedents) to ground future decisions in a way that can be utilized by human-led processes or implemented through prompting large language models (LLMs). We evaluate how accurately CLG grounds decisions with five groups and communities spread across two decision task domains, comparing against a traditional constitutional grounding approach, and find that in 4 out of 5 groups, decisions produced with CLG were significantly more accurately aligned to ground truth: 16.0--23.3 %-points higher accuracy using the human-led process, and 20.8--32.9 %-points higher when prompting LLMs. We also evaluate the impact of different configurations of CLG, such as the case retrieval window size and whether to enforce binding decisions based on selected precedents, showing support for using binding decisions and preferring larger retrieval windows. Finally, we discuss the limitations of our case-based approach as well as how it may be best used to augment existing constitutional approaches when it comes to aligning human and AI decisions.

Cyber resilience is the ability of a system to resist and recover from a cyber attack, thereby restoring the system's functionality. Effective design and development of a cyber resilient system requires experimental methods and tools for quantitative measuring of cyber resilience. This paper describes an experimental method and test bed for obtaining resilience-relevant data as a system (in our case -- a truck) traverses its route, in repeatable, systematic experiments. We model a truck equipped with an autonomous cyber-defense system and which also includes inherent physical resilience features. When attacked by malware, this ensemble of cyber-physical features (i.e., "bonware") strives to resist and recover from the performance degradation caused by the malware's attack. We propose parsimonious mathematical models to aid in quantifying systems' resilience to cyber attacks. Using the models, we identify quantitative characteristics obtainable from experimental data, and show that these characteristics can serve as useful quantitative measures of cyber resilience.

Wireless indoor localization has attracted significant research interest due to its high accuracy, low cost, lightweight design, and low power consumption. Specifically, ultra-wideband (UWB) time difference of arrival (TDOA)-based localization has emerged as a scalable positioning solution for mobile robots, consumer electronics, and wearable devices, featuring good accuracy and reliability. While UWB TDOA-based localization systems rely on the deployment of UWB radio sensors as positioning landmarks, existing works often assume these placements are predetermined or study the sensor placement problem alone without evaluating it in practical scenarios. In this article, we bridge this gap by approaching the UWB TDOA localization from a system-level perspective, integrating sensor placement as a key component and conducting practical evaluation in real-world scenarios. Through extensive real-world experiments, we demonstrate the accuracy and robustness of our localization system, comparing its performance to the theoretical lower bounds. Using a challenging multi-room environment as a case study, we illustrate the full system construction process, from sensor placement optimization to real-world deployment. Our evaluation, comprising a cumulative total of 39 minutes of real-world experiments involving up to five agents and covering 2608 meters across four distinct scenarios, provides valuable insights and guidelines for constructing UWB TDOA localization systems.

Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of language model pre-training. This paper demonstrates that the optimal composition of training data from different domains is scale-dependent, challenging the existing practice of determining optimal mixtures through small-scale experiments and directly applying them at larger scales. We derive an analytical model for the dependence of optimal weights on data scale and introduce *AutoScale*, a novel, practical approach for optimizing data compositions at potentially large training data scales. *AutoScale* first uses a principled optimization framework to find optimal compositions at smaller, feasible scales, then predicts optimal compositions at larger scales using our derived model. Our evaluation on GPT-2 Large and BERT pre-training demonstrates *AutoScale*'s effectiveness in improving training convergence and downstream performance. Particularly, for GPT-2 Large on RedPajama, *AutoScale* decreases validation perplexity 28% faster than baselines, with up to 38% speed-up over unweighted training, achieving the best performance across downstream tasks. This work provides insights into the varying benefits of data sources across training scales for language models, contributing to the burgeoning research on scale-dependent data curation. Code is open-sourced.

Fog computing brings about a transformative shift in data management, presenting unprecedented opportunities for enhanced performance and reduced latency. However, one of the key aspects of fog computing revolves around ensuring efficient power and reliability management. To address this challenge, we have introduced a novel model that proposes a non-cooperative game theory-based strategy to strike a balance between power consumption and reliability in decision-making processes. Our proposed model capitalizes on the Cold Primary/Backup strategy (CPB) to guarantee reliability target by re-executing tasks to different nodes when a fault occurs, while also leveraging Dynamic Voltage and Frequency Scaling (DVFS) to reduce power consumption during task execution and maximizing overall efficiency. Non-cooperative game theory plays a pivotal role in our model, as it facilitates the development of strategies and solutions that uphold reliability while reducing power consumption. By treating the trade-off between power and reliability as a non-cooperative game, our proposed method yields significant energy savings, with up to a 35% reduction in energy consumption, 41% decrease in wait time, and 31% shorter completion time compared to state-of-the-art approaches. Our findings underscore the value of game theory in optimizing power and reliability within fog computing environments, demonstrating its potential for driving substantial improvements

This exhaustive investigation is dedicated to delving into the intricate legal aspects that underlie the inefficiency in the advancement and utilization of sustainable energies, with a primary focus on the dynamic landscape of China and carefully selected representative nations. In an era where the global community increasingly acknowledges the pressing need for environmentally-friendly alternatives to traditional fossil fuels, renewable energy sources have rightfully garnered substantial attention as encouraging solutions. Nevertheless, notwithstanding their potential to revolutionize the energy sector and counteract climate change, a multitude of legal and regulatory barriers may present formidable hindrances that impede their seamless integration into the energy landscape. With a resolute and concentrated aim, the research sets forth on a painstaking exploration and analysis of the intricate legal frameworks, policies, and institutional arrangements in place within China and the chosen representative nations. The ultimate objective is to discern and identify potential challenges and inefficiencies that could hinder the progress of renewable energy projects and initiatives.

Objective: Configuring a prosthetic leg is an integral part of the fitting process, but the personalization of a multi-modal powered knee-ankle prosthesis is often too complex to realize in a clinical environment. This paper develops both the technical means to individualize a hybrid kinematic-impedance controller for variable-incline walking and sit-stand transitions, and an intuitive Clinical Tuning Interface (CTI) that allows prosthetists to directly modify the controller behavior. Methods: Utilizing an established method for predicting kinematic gait individuality alongside a new parallel approach for kinetic individuality, we applied tuned characteristics exclusively from level-ground walking to personalize continuous-phase/task models of joint kinematics and impedance. To take advantage of this method, we developed a CTI that translates common clinical tuning parameters into model adjustments. We then conducted a case study involving an above-knee amputee participant where a prosthetist iteratively tuned the prosthesis in a simulated clinical session involving walking and sit-stand transitions. Results: The prosthetist fully tuned the multi-activity prosthesis controller in under 20 min. Each iteration of tuning (i.e., observation, parameter adjustment, and model reprocessing) took 2 min on average for walking and 1 min on average for sit-stand. The tuned behavior changes were appropriately manifested in the commanded prosthesis torques, both at the tuned tasks and across untuned tasks (inclines). Conclusion: The CTI leveraged able-bodied trends to efficiently personalize a wide array of walking tasks and sit-stand transitions. A case-study validated the CTI tuning method and demonstrated the efficiency necessary for powered knee-ankle prostheses to become clinically viable.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

北京阿比特科技有限公司