In many wireless application scenarios, acquiring labeled data can be prohibitively costly, requiring complex optimization processes or measurement campaigns. Semi-supervised learning leverages unlabeled samples to augment the available dataset by assigning synthetic labels obtained via machine learning (ML)-based predictions. However, treating the synthetic labels as true labels may yield worse-performing models as compared to models trained using only labeled data. Inspired by the recently developed prediction-powered inference (PPI) framework, this work investigates how to leverage the synthetic labels produced by an ML model, while accounting for the inherent bias concerning true labels. To this end, we first review PPI and its recent extensions, namely tuned PPI and cross-prediction-powered inference (CPPI). Then, we introduce two novel variants of PPI. The first, referred to as tuned CPPI, provides CPPI with an additional degree of freedom in adapting to the quality of the ML-based labels. The second, meta-CPPI (MCPPI), extends tuned CPPI via the joint optimization of the ML labeling models and of the parameters of interest. Finally, we showcase two applications of PPI-based techniques in wireless systems, namely beam alignment based on channel knowledge maps in millimeter-wave systems and received signal strength information-based indoor localization. Simulation results show the advantages of PPI-based techniques over conventional approaches that rely solely on labeled data or that apply standard pseudo-labeling strategies from semi-supervised learning. Furthermore, the proposed tuned CPPI method is observed to guarantee the best performance among all benchmark schemes, especially in the regime of limited labeled data.
Rate splitting multiple access (RSMA) is regarded as a crucial and powerful physical layer (PHY) paradigm for next-generation communication systems. Particularly, users employ successive interference cancellation (SIC) to decode part of the interference while treating the remainder as noise. However, conventional RSMA systems rely on fixed-position antenna arrays, limiting their ability to fully exploit spatial diversity. This constraint reduces beamforming gain and significantly impairs RSMA performance. To address this problem, we propose a movable antenna (MA)-aided RSMA scheme that allows the antennas at the base station (BS) to dynamically adjust their positions. Our objective is to maximize the system sum rate of common and private messages by jointly optimizing the MA positions, beamforming matrix, and common rate allocation. To tackle the formulated non-convex problem, we apply fractional programming (FP) and develop an efficient two-stage, coarse-to-fine-grained searching (CFGS) algorithm to obtain high-quality solutions. Numerical results demonstrate that, with optimized antenna adjustments, the MA-enabled system achieves substantial performance and reliability improvements in RSMA over fixed-position antenna setups.
In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement classification, utilizing electroencephalogram (EEG) data. These developments are fundamental in exploring how neural signals can be interpreted to recognize specific physical actions. This study centers on a written alphabet classification task, where we aim to decode EEG signals associated with handwriting. To achieve this, we incorporate hand kinematics to guide the extraction of the consistent embeddings from high-dimensional neural recordings using auxiliary variables (CEBRA). These CEBRA embeddings, along with the EEG, are processed by a parallel convolutional neural network model that extracts features from both data sources simultaneously. The model classifies nine different handwritten characters, including symbols such as exclamation marks and commas, within the alphabet. We evaluate the model using a quantitative five-fold cross-validation approach and explore the structure of the embedding space through visualizations. Our approach achieves a classification accuracy of 91 % for the nine-class task, demonstrating the feasibility of fine-grained handwriting decoding from EEG.
Unmanned aerial vehicles (UAVs) are gaining widespread use in wireless relay systems due to their exceptional flexibility and cost-effectiveness. This paper focuses on the integrated design of UAV trajectories and the precoders at both the transmitter and UAV in a UAV-assisted relay communication system, accounting for transmit power constraints and UAV flight limitations. Unlike previous works that primarily address multiple-input single-output (MISO) systems with Gaussian inputs, we investigate a more realistic scenario involving multiple-input multiple-output (MIMO) systems with finite-alphabet inputs. To tackle the challenging and inherently non-convex problem, we propose an efficient solution algorithm that leverages successive convex approximation and alternating optimization techniques. Simulation results validate the effectiveness of the proposed algorithm, demonstrating its capability to optimize system performance.
Controllers for software-defined networks (SDNs) are centralised software components that enable advanced network functionalities, such as dynamic traffic engineering and network virtualisation. However, these functionalities increase the complexity of SDN controllers, making thorough testing crucial. SDN controllers are stateful, interacting with multiple network devices through sequences of control messages. Identifying stateful failures in an SDN controller is challenging due to the infinite possible sequences of control messages, which result in an unbounded number of stateful interactions between the controller and network devices. In this article, we propose SeqFuzzSDN, a learning-guided fuzzing method for testing stateful SDN controllers. SeqFuzzSDN aims to (1) efficiently explore the state space of the SDN controller under test, (2) generate effective and diverse tests (i.e., control message sequences) to uncover failures, and (3) infer accurate failure-inducing models that characterise the message sequences leading to failures. In addition, we compare SeqFuzzSDN with three extensions of state-of-the-art (SOTA) methods for fuzzing SDNs. Our findings show that, compared to the extended SOTA methods, SeqFuzzSDN (1) generates more diverse message sequences that lead to failures within the same time budget, and (2) produces more accurate failure-inducing models, significantly outperforming the other extended SOTA methods in terms of sensitivity.
Distributed microgrids are conventionally dependent on communication networks to achieve secondary control objectives. This dependence makes them vulnerable to stealth data integrity attacks (DIAs) where adversaries may perform manipulations via infected transmitters and repeaters to jeopardize stability. This paper presents a physics-guided, supervised Artificial Neural Network (ANN)-based framework that identifies communication-level cyberattacks in microgrids by analyzing whether incoming measurements will cause abnormal behavior of the secondary control layer. If abnormalities are detected, an iteration through possible spanning tree graph topologies that can be used to fulfill secondary control objectives is done. Then, a communication network topology that would not create secondary control abnormalities is identified and enforced for maximum stability. By altering the communication graph topology, the framework eliminates the dependence of the secondary control layer on inputs from compromised cyber devices helping it achieve resilience without instability. Several case studies are provided showcasing the robustness of the framework against False Data Injections and repeater-level Man-in-the-Middle attacks. To understand practical feasibility, robustness is also verified against larger microgrid sizes and in the presence of varying noise levels. Our findings indicate that performance can be affected when attempting scalability in the presence of noise. However, the framework operates robustly in low-noise settings.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.