亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Network programmability allows modification of fine-grain data plane functionality. The performance benefits of data plane programmability have motivated many researchers to offload computation that previously operated only on servers to the network, creating the notion of in-network computing (INC). Because failures can occur in the data plane, fault tolerance mechanisms are essential for INC. However, INC operators and developers must manually set fault tolerance requirements using domain knowledge to change the source code. These manually set requirements may take time and lead to errors in case of misconfiguration. In this work, we present Araucaria, a system that aims to simplify the definition and implementation of fault tolerance requirements for INC. The system allows requirements specification using an intent language, which enables the expression of consistency and availability requirements in a constrained natural language. A refinement process translates the intent and incorporates the essential building blocks and configurations into the INC code. We present a prototype of Araucaria and analyze the end-to-end system behavior. Experiments demonstrate that the refinement scales to multiple intents and that the system provides fault tolerance with negligible overhead in failure scenarios.

相關內容

In the rapidly advancing field of conditional image generation research, challenges such as limited explainability lie in effectively evaluating the performance and capabilities of various models. This paper introduces VIEScore, a Visual Instruction-guided Explainable metric for evaluating any conditional image generation tasks. VIEScore leverages general knowledge from Multimodal Large Language Models (MLLMs) as the backbone and does not require training or fine-tuning. We evaluate VIEScore on seven prominent tasks in conditional image tasks and found: (1) VIEScore (GPT4-o) achieves a high Spearman correlation of 0.4 with human evaluations, while the human-to-human correlation is 0.45. (2) VIEScore (with open-source MLLM) is significantly weaker than GPT-4o and GPT-4v in evaluating synthetic images. (3) VIEScore achieves a correlation on par with human ratings in the generation tasks but struggles in editing tasks. With these results, we believe VIEScore shows its great potential to replace human judges in evaluating image synthesis tasks.

Early-exit neural networks (EENNs) enable adaptive and efficient inference by providing predictions at multiple stages during the forward pass. In safety-critical applications, these predictions are meaningful only when accompanied by reliable uncertainty estimates. A popular method for quantifying the uncertainty of predictive models is the use of prediction sets. However, we demonstrate that standard techniques such as conformal prediction and Bayesian credible sets are not suitable for EENNs. They tend to generate non-nested sets across exits, meaning that labels deemed improbable at one exit may reappear in the prediction set of a subsequent exit. To address this issue, we investigate anytime-valid confidence sequences (AVCSs), an extension of traditional confidence intervals tailored for data-streaming scenarios. These sequences are inherently nested and thus well-suited for an EENN's sequential predictions. We explore the theoretical and practical challenges of using AVCSs in EENNs and show that they indeed yield nested sets across exits. Thus our work presents a promising approach towards fast, yet still safe, predictive modeling

While spiking neural networks (SNNs) offer a promising neurally-inspired model of computation, they are vulnerable to adversarial attacks. We present the first study that draws inspiration from neural homeostasis to design a threshold-adapting leaky integrate-and-fire (TA-LIF) neuron model and utilize TA-LIF neurons to construct the adversarially robust homeostatic SNNs (HoSNNs) for improved robustness. The TA-LIF model incorporates a self-stabilizing dynamic thresholding mechanism, offering a local feedback control solution to the minimization of each neuron's membrane potential error caused by adversarial disturbance. Theoretical analysis demonstrates favorable dynamic properties of TA-LIF neurons in terms of the bounded-input bounded-output stability and suppressed time growth of membrane potential error, underscoring their superior robustness compared with the standard LIF neurons. When trained with weak FGSM attacks (attack budget = 2/255) and tested with much stronger PGD attacks (attack budget = 8/255), our HoSNNs significantly improve model accuracy on several datasets: from 30.54% to 74.91% on FashionMNIST, from 0.44% to 35.06% on SVHN, from 0.56% to 42.63% on CIFAR10, from 0.04% to 16.66% on CIFAR100, over the conventional LIF-based SNNs.

Non-IID transfer learning on graphs is crucial in many high-stakes domains. The majority of existing works assume stationary distribution for both source and target domains. However, real-world graphs are intrinsically dynamic, presenting challenges in terms of domain evolution and dynamic discrepancy between source and target domains. To bridge the gap, we shift the problem to the dynamic setting and pose the question: given the label-rich source graphs and the label-scarce target graphs both observed in previous T timestamps, how can we effectively characterize the evolving domain discrepancy and optimize the generalization performance of the target domain at the incoming T+1 timestamp? To answer it, we propose a generalization bound for dynamic non-IID transfer learning on graphs, which implies the generalization performance is dominated by domain evolution and domain discrepancy between source and target graphs. Inspired by the theoretical results, we introduce a novel generic framework named EvoluNet. It leverages a transformer-based temporal encoding module to model temporal information of the evolving domains and then uses a dynamic domain unification module to efficiently learn domain-invariant representations across the source and target domains. Finally, EvoluNet outperforms the state-of-the-art models by up to 12.1%, demonstrating its effectiveness in transferring knowledge from dynamic source graphs to dynamic target graphs.

Time-series data in real-world settings typically exhibit long-range dependencies and are observed at non-uniform intervals. In these settings, traditional sequence-based recurrent models struggle. To overcome this, researchers often replace recurrent architectures with Neural ODE-based models to account for irregularly sampled data and use Transformer-based architectures to account for long-range dependencies. Despite the success of these two approaches, both incur very high computational costs for input sequences of even moderate length. To address this challenge, we introduce the Rough Transformer, a variation of the Transformer model that operates on continuous-time representations of input sequences and incurs significantly lower computational costs. In particular, we propose \textit{multi-view signature attention}, which uses path signatures to augment vanilla attention and to capture both local and global (multi-scale) dependencies in the input data, while remaining robust to changes in the sequence length and sampling frequency and yielding improved spatial processing. We find that, on a variety of time-series-related tasks, Rough Transformers consistently outperform their vanilla attention counterparts while obtaining the representational benefits of Neural ODE-based models, all at a fraction of the computational time and memory resources.

We introduce VividDream, a method for generating explorable 4D scenes with ambient dynamics from a single input image or text prompt. VividDream first expands an input image into a static 3D point cloud through iterative inpainting and geometry merging. An ensemble of animated videos is then generated using video diffusion models with quality refinement techniques and conditioned on renderings of the static 3D scene from the sampled camera trajectories. We then optimize a canonical 4D scene representation using an animated video ensemble, with per-video motion embeddings and visibility masks to mitigate inconsistencies. The resulting 4D scene enables free-view exploration of a 3D scene with plausible ambient scene dynamics. Experiments demonstrate that VividDream can provide human viewers with compelling 4D experiences generated based on diverse real images and text prompts.

We present TetSphere splatting, an explicit, Lagrangian representation for reconstructing 3D shapes with high-quality geometry. In contrast to conventional object reconstruction methods which predominantly use Eulerian representations, including both neural implicit (e.g., NeRF, NeuS) and explicit representations (e.g., DMTet), and often struggle with high computational demands and suboptimal mesh quality, TetSphere splatting utilizes an underused but highly effective geometric primitive -- tetrahedral meshes. This approach directly yields superior mesh quality without relying on neural networks or post-processing. It deforms multiple initial tetrahedral spheres to accurately reconstruct the 3D shape through a combination of differentiable rendering and geometric energy optimization, resulting in significant computational efficiency. Serving as a robust and versatile geometry representation, Tet-Sphere splatting seamlessly integrates into diverse applications, including single-view 3D reconstruction, image-/text-to-3D content generation. Experimental results demonstrate that TetSphere splatting outperforms existing representations, delivering faster optimization speed, enhanced mesh quality, and reliable preservation of thin structures.

Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding $x \in \mathbb{R}^d$ per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality $\epsilon$-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5$\times$ fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10$\%$ improved recall with $90\%$ lower latency.

Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司