亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a method for computing immediately human interpretable yet accurate classifiers from tabular data. The classifiers obtained are short Boolean formulas, computed via first discretizing the original data and then using feature selection coupled with a very fast algorithm for producing the best possible Boolean classifier for the setting. We demonstrate the approach via 13 experiments, obtaining results with accuracies comparable to ones obtained via random forests, XGBoost, and existing results for the same datasets in the literature. In most cases, the accuracy of our method is in fact similar to that of the reference methods, even though the main objective of our study is the immediate interpretability of our classifiers. We also prove a new result on the probability that the classifier we obtain from real-life data corresponds to the ideally best classifier with respect to the background distribution the data comes from.

相關內容

特征選擇( Feature Selection )也稱特征子集選擇( Feature Subset Selection , FSS ),或屬性選擇( Attribute Selection )。是指從已有的M個特征(Feature)中選擇N個特征使得系統的特定指標最優化,是從原始特征中選擇出一些最有效特征以降低數據集維度的過程,是提高學習算法性能的一個重要手段,也是模式識別中關鍵的數據預處理步驟。對于一個學習算法來說,好的學習樣本是訓練模型的關鍵。

Anomaly detection is a branch of data analysis and machine learning which aims at identifying observations that exhibit abnormal behaviour. Be it measurement errors, disease development, severe weather, production quality default(s) (items) or failed equipment, financial frauds or crisis events, their on-time identification, isolation and explanation constitute an important task in almost any branch of science and industry. By providing a robust ordering, data depth - statistical function that measures belongingness of any point of the space to a data set - becomes a particularly useful tool for detection of anomalies. Already known for its theoretical properties, data depth has undergone substantial computational developments in the last decade and particularly recent years, which has made it applicable for contemporary-sized problems of data analysis and machine learning. In this article, data depth is studied as an efficient anomaly detection tool, assigning abnormality labels to observations with lower depth values, in a multivariate setting. Practical questions of necessity and reasonability of invariances and shape of the depth function, its robustness and computational complexity, choice of the threshold are discussed. Illustrations include use-cases that underline advantageous behaviour of data depth in various settings.

Conventional intelligent systems based on deep neural network (DNN) models encounter challenges in achieving human-like continual learning due to catastrophic forgetting. Here, we propose a metaplasticity model inspired by human working memory, enabling DNNs to perform catastrophic forgetting-free continual learning without any pre- or post-processing. A key aspect of our approach involves implementing distinct types of synapses from stable to flexible, and randomly intermixing them to train synaptic connections with different degrees of flexibility. This strategy allowed the network to successfully learn a continuous stream of information, even under unexpected changes in input length. The model achieved a balanced tradeoff between memory capacity and performance without requiring additional training or structural modifications, dynamically allocating memory resources to retain both old and new information. Furthermore, the model demonstrated robustness against data poisoning attacks by selectively filtering out erroneous memories, leveraging the Hebb repetition effect to reinforce the retention of significant data.

We obtain the almost sure strong consistency and the Berry-Esseen type bound for the maximum likelihood estimator Ln of the ensemble L for determinantal point processes (DPPs), strengthening and completing previous work initiated in Brunel, Moitra, Rigollet, and Urschel [BMRU17]. Numerical algorithms of estimating DPPs are developed and simulation studies are performed. Lastly, we give explicit formula and a detailed discussion for the maximum likelihood estimator for blocked determinantal matrix of two by two submatrices and compare it with the frequency method.

Shape-restricted inferences have exhibited empirical success in various applications with survival data. However, certain works fall short in providing a rigorous theoretical justification and an easy-to-use variance estimator with theoretical guarantee. Motivated by Deng et al. (2023), this paper delves into an additive and shape-restricted partially linear Cox model for right-censored data, where each additive component satisfies a specific shape restriction, encompassing monotonic increasing/decreasing and convexity/concavity. We systematically investigate the consistencies and convergence rates of the shape-restricted maximum partial likelihood estimator (SMPLE) of all the underlying parameters. We further establish the aymptotic normality and semiparametric effiency of the SMPLE for the linear covariate shift. To estimate the asymptotic variance, we propose an innovative data-splitting variance estimation method that boasts exceptional versatility and broad applicability. Our simulation results and an analysis of the Rotterdam Breast Cancer dataset demonstrate that the SMPLE has comparable performance with the maximum likelihood estimator under the Cox model when the Cox model is correct, and outperforms the latter and Huang (1999)'s method when the Cox model is violated or the hazard is nonsmooth. Meanwhile, the proposed variance estimation method usually leads to reliable interval estimates based on the SMPLE and its competitors.

Discrete choice models with non-monotonic response functions are important in many areas of application, especially political sciences and marketing. This paper describes a novel unfolding model for binary data that allows for heavy-tailed shocks to the underlying utilities. One of our key contributions is a Markov chain Monte Carlo algorithm that requires little or no parameter tuning, fully explores the support of the posterior distribution, and can be used to fit various extensions of our core model that involve (Bayesian) hypothesis testing on the latent construct. Our empirical evaluations of the model and the associated algorithm suggest that they provide better complexity-adjusted fit to voting data from the United States House of Representatives.

Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings and exploits that causal models are invariant. ICP has been extended to general additive noise models and to nonparametric settings using conditional independence tests. However, the latter often suffer from low power (or poor type I error control) and additive noise models are not suitable for applications in which the response is not measured on a continuous scale, but reflects categories or counts. Here, we develop transformation-model (TRAM) based ICP, allowing for continuous, categorical, count-type, and uninformatively censored responses (these model classes, generally, do not allow for identifiability when there is no exogenous heterogeneity). As an invariance test, we propose TRAM-GCM based on the expected conditional covariance between environments and score residuals with uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we also consider TRAM-Wald, which tests invariance based on the Wald statistic. We provide an open-source R package 'tramicp' and evaluate our approach on simulated data and in a case study investigating causal features of survival in critically ill patients.

In the analysis of spatially resolved transcriptomics data, detecting spatially variable genes (SVGs) is crucial. Numerous computational methods exist, but varying SVG definitions and methodologies lead to incomparable results. We review 31 state-of-the-art methods, categorizing SVGs into three types: overall, cell-type-specific, and spatial-domain-marker SVGs. Our review explains the intuitions underlying these methods, summarizes their applications, and categorizes the hypothesis tests they use in the trade-off between generality and specificity for SVG detection. We discuss challenges in SVG detection and propose future directions for improvement. Our review offers insights for method developers and users, advocating for category-specific benchmarking.

We investigate the set of invariant idempotent probabilities for countable idempotent iterated function systems (IFS) defined in compact metric spaces. We demonstrate that, with constant weights, there exists a unique invariant idempotent probability. Utilizing Secelean's approach to countable IFSs, we introduce partially finite idempotent IFSs and prove that the sequence of invariant idempotent measures for these systems converges to the invariant measure of the original countable IFS. We then apply these results to approximate such measures with discrete systems, producing, in the one-dimensional case, data series whose Higuchi fractal dimension can be calculated. Finally, we provide numerical approximations for two-dimensional cases and discuss the application of generalized Higuchi dimensions in these scenarios.

The manipulation of deformable linear objects (DLOs) via model-based control requires an accurate and computationally efficient dynamics model. Yet, data-driven DLO dynamics models require large training data sets while their predictions often do not generalize, whereas physics-based models rely on good approximations of physical phenomena and often lack accuracy. To address these challenges, we propose a physics-informed neural ODE capable of predicting agile movements with significantly less data and hyper-parameter tuning. In particular, we model DLOs as serial chains of rigid bodies interconnected by passive elastic joints in which interaction forces are predicted by neural networks. The proposed model accurately predicts the motion of an robotically-actuated aluminium rod and an elastic foam cylinder after being trained on only thirty seconds of data. The project code and data are available at: \url{//tinyurl.com/neuralprba}

Prediction models are used to predict an outcome based on input variables. Missing data in input variables often occurs at model development and at prediction time. The missForestPredict R package proposes an adaptation of the missForest imputation algorithm that is fast, user-friendly and tailored for prediction settings. The algorithm iteratively imputes variables using random forests until a convergence criterion (unified for continuous and categorical variables and based on the out-of-bag error) is met. The imputation models are saved for each variable and iteration and can be applied later to new observations at prediction time. The missForestPredict package offers extended error monitoring, control over variables used in the imputation and custom initialization. This allows users to tailor the imputation to their specific needs. The missForestPredict algorithm is compared to mean/mode imputation, linear regression imputation, mice, k-nearest neighbours, bagging, miceRanger and IterativeImputer on eight simulated datasets with simulated missingness (48 scenarios) and eight large public datasets using different prediction models. missForestPredict provides competitive results in prediction settings within short computation times.

北京阿比特科技有限公司