亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces an innovative method for predicting wireless network traffic in concise temporal intervals for Open Radio Access Networks (O-RAN) using a transformer architecture, which is the machine learning model behind generative AI tools. Depending on the anticipated traffic, the system either launches a reinforcement learning-based traffic steering xApp or a cell sleeping rApp to enhance performance metrics like throughput or energy efficiency. Our simulation results demonstrate that the proposed traffic prediction-based network optimization mechanism matches the performance of standalone RAN applications (rApps/ xApps) that are always on during the whole simulation time while offering on-demand activation. This feature is particularly advantageous during instances of abrupt fluctuations in traffic volume. Rather than persistently operating specific applications irrespective of the actual incoming traffic conditions, the proposed prediction-based method increases the average energy efficiency by 39.7% compared to the "Always on Traffic Steering xApp" and achieves 10.1% increase in throughput compared to the "Always on Cell Sleeping rApp". The simulation has been conducted over 24 hours, emulating a whole day traffic pattern for a dense urban area.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

With recent advancements in the sixth generation (6G) communication technologies, more vertical industries have encountered diverse network services. How to reduce energy consumption is critical to meet the expectation of the quality of diverse network services. In particular, the number of base stations in 6G is huge with coupled adjustable network parameters. However, the problem is complex with multiple network objectives and parameters. Network intents are difficult to map to individual network elements and require enhanced automation capabilities. In this paper, we present a network intent decomposition and optimization mechanism in an energy-aware radio access network scenario. By characterizing the intent ontology with a standard template, we present a generic network intent representation framework. Then we propose a novel intent modeling method using Knowledge Acquisition in automated Specification language, which can model the network ontology. To clarify the number and types of network objectives and energy-saving operations, we develop a Softgoal Interdependency Graph-based network intent decomposition model, and thus, a network intent decomposition algorithm is presented. Simulation results demonstrate that the proposed algorithm outperforms without conflict analysis in intent decomposition time. Moreover, we design a deep Q-network-assisted intent optimization scheme to validate the performance gain.

We introduce FEDQ-Trust, an innovative data-driven trust prediction approach designed for mobile edge-based Internet of Things (IoT) environments. The decentralized nature of mobile edge environments introduces challenges due to variations in data distribution, impacting the accuracy and training efficiency of existing distributed data-driven trust prediction models. FEDQ-Trust effectively tackles the statistical heterogeneity challenges by integrating Federated Expectation-Maximization with Deep Q Networks. Federated Expectation-Maximization's robust handling of statistical heterogeneity significantly enhances trust prediction accuracy. Meanwhile, Deep Q Networks streamlines the model training process, efficiently reducing the number of training clients while maintaining model performance. We conducted a suite of experiments within simulated MEC-based IoT settings by leveraging two real-world IoT datasets. The experimental results demonstrate that our model achieved a significant convergence time reduction of 97% to 99% while ensuring a notable improvement of 8% to 14% in accuracy compared to state-of-the-art models.

The next generation of Wi-Fi is meant to achieve ultra-high reliability for wireless communication. Several approaches are available to this extent, some of which are being considered for inclusion in standards specifications, including coordination of access points to reduce interference. In this paper, we propose a centralized architecture based on digital twins, called WiTwin, with the aim of supporting wireless stations in selecting the optimal association according to a set of parameters. Unlike prior works, we assume that Wi-Fi 7 features like multi-link operation (MLO) are available. Moreover, one of the main goals of this architecture is to preserve communication quality in the presence of mobility, by helping stations to perform reassociation at the right time and in the best way.

This paper introduces an innovative application of Large Event Models (LEMs), akin to Large Language Models, to the domain of soccer analytics. By learning the language of soccer - predicting variables for subsequent events rather than words - LEMs facilitate the simulation of matches and offer various applications, including player performance prediction across different team contexts. We focus on fine-tuning LEMs with the WyScout dataset for the 2017-2018 Premier League season to derive specific insights into player contributions and team strategies. Our methodology involves adapting these models to reflect the nuanced dynamics of soccer, enabling the evaluation of hypothetical transfers. Our findings confirm the effectiveness and limitations of LEMs in soccer analytics, highlighting the model's capability to forecast teams' expected standings and explore high-profile scenarios, such as the potential effects of transferring Cristiano Ronaldo or Lionel Messi to different teams in the Premier League. This analysis underscores the importance of context in evaluating player quality. While general metrics may suggest significant differences between players, contextual analyses reveal narrower gaps in performance within specific team frameworks.

Recent advances in deep learning algorithms have shown impressive progress in image copy-move forgery detection (CMFD). However, these algorithms lack generalizability in practical scenarios where the copied regions are not present in the training images, or the cloned regions are part of the background. Additionally, these algorithms utilize convolution operations to distinguish source and target regions, leading to unsatisfactory results when the target regions blend well with the background. To address these limitations, this study proposes a novel end-to-end CMFD framework that integrates the strengths of conventional and deep learning methods. Specifically, the study develops a deep cross-scale PatchMatch (PM) method that is customized for CMFD to locate copy-move regions. Unlike existing deep models, our approach utilizes features extracted from high-resolution scales to seek explicit and reliable point-to-point matching between source and target regions. Furthermore, we propose a novel pairwise rank learning framework to separate source and target regions. By leveraging the strong prior of point-to-point matches, the framework can identify subtle differences and effectively discriminate between source and target regions, even when the target regions blend well with the background. Our framework is fully differentiable and can be trained end-to-end. Comprehensive experimental results highlight the remarkable generalizability of our scheme across various copy-move scenarios, significantly outperforming existing methods.

In reconfigurable intelligent surface (RIS)-assisted symbiotic radio (SR), the RIS acts as a secondary transmitter by modulating its information bits over the incident primary signal and simultaneously assists the primary transmission, then a cooperative receiver is used to jointly decode the primary and secondary signals. Most existing works of SR focus on using RIS to enhance the reflecting link while ignoring the ambiguity problem for the joint detection caused by the multiplication relationship of the primary and secondary signals. Particularly, in case of a blocked direct link, joint detection will suffer from severe performance loss due to the ambiguity, when using the conventional on-off keying and binary phase shift keying modulation schemes for RIS. To address this issue, we propose a novel modulation scheme for RIS-assisted SR that divides the phase-shift matrix into two components: the symbol-invariant and symbol-varying components, which are used to assist the primary transmission and carry the secondary signal, respectively. To design these two components, we focus on the detection of the composite signal formed by the primary and secondary signals, through which a problem of minimizing the bit error rate (BER) of the composite signal is formulated to improve both the BER performance of the primary and secondary ones. By solving the problem, we derive the closed-form solution of the optimal symbol-invariant and symbol-varying components, which is related to the channel strength ratio of the direct link to the reflecting link. Moreover, theoretical BER performance is analyzed. Finally, simulation results show the superiority of the proposed modulation scheme over its conventional counterpart.

We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo's vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. The clients in each silo perform multiple local gradient steps before sharing updates with their hub to reduce communication overhead. Each hub adjusts its coordinates by averaging its workers' updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions and the number of local updates. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.

This paper introduces a new parallel run-time for QuickCheck, a Haskell library and EDSL for specifying and randomly testing properties of programs. The new run-time can run multiple tests for a single property in parallel, using the available cores. Moreover, if a counterexample is found, the run-time can also shrink the test case in parallel, implementing a parallel search for a locally minimal counterexample. Our experimental results show a 3--9$\times$ speed-up for testing QuickCheck properties on a variety of heavy-weight benchmark problems. We also evaluate two different shrinking strategies; deterministic shrinking, which guarantees to produce the same minimal test case as standard sequential shrinking, and greedy shrinking, which does not have this guarantee but still produces a locally minimal test case, and is faster in practice.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司