Deep learning models are complex due to their size, structure, and inherent randomness in training procedures. Additional complexity arises from the selection of datasets and inductive biases. Addressing these challenges for explainability, Kim et al. (2018) introduced Concept Activation Vectors (CAVs), which aim to understand deep models' internal states in terms of human-aligned concepts. These concepts correspond to directions in latent space, identified using linear discriminants. Although this method was first applied to image classification, it was later adapted to other domains, including natural language processing. In this work, we attempt to apply the method to electroencephalogram (EEG) data for explainability in Kostas et al.'s BENDR (2021), a large-scale transformer model. A crucial part of this endeavor involves defining the explanatory concepts and selecting relevant datasets to ground concepts in the latent space. Our focus is on two mechanisms for EEG concept formation: the use of externally labeled EEG datasets, and the application of anatomically defined concepts. The former approach is a straightforward generalization of methods used in image classification, while the latter is novel and specific to EEG. We present evidence that both approaches to concept formation yield valuable insights into the representations learned by deep EEG models.
This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, our approach often reduces the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over 96% compared to the algorithm from [Gorodetsky, Karaman and Marzouk, Comput. Methods Appl. Mech. Eng., 347 (2019)] .
Iterative refinement (IR) is a popular scheme for solving a linear system of equations based on gradually improving the accuracy of an initial approximation. Originally developed to improve upon the accuracy of Gaussian elimination, interest in IR has been revived because of its suitability for execution on fast low-precision hardware such as analog devices and graphics processing units. IR generally converges when the error associated with the solution method is small, but is known to diverge when this error is large. We propose and analyze a novel enhancement to the IR algorithm by adding a line search optimization step that guarantees the algorithm will not diverge. Numerical experiments verify our theoretical results and illustrate the effectiveness of our proposed scheme.
The autologistic actor attribute model, or ALAAM, is the social influence counterpart of the better-known exponential-family random graph model (ERGM) for social selection. Extensive experience with ERGMs has shown that the problem of near-degeneracy which often occurs with simple models can be overcome by using "geometrically weighted" or "alternating" statistics. In the much more limited empirical applications of ALAAMs to date, the problem of near-degeneracy, although theoretically expected, appears to have been less of an issue. In this work I present a comprehensive survey of ALAAM applications, showing that this model has to date only been used with relatively small networks, in which near-degeneracy does not appear to be a problem. I show near-degeneracy does occur in simple ALAAM models of larger empirical networks, define some geometrically weighted ALAAM statistics analogous to those for ERGM, and demonstrate that models with these statistics do not suffer from near-degeneracy and hence can be estimated where they could not be with the simple statistics.
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM$_{2.5}$ concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM$_{2.5}$ concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statistical approaches.
This paper presents a numerical method for the simulation of elastic solid materials coupled to fluid inclusions. The application is motivated by the modeling of vascularized tissues and by problems in medical imaging which target the estimation of effective (i.e., macroscale) material properties, taking into account the influence of microscale dynamics, such as fluid flow in the microvasculature. The method is based on the recently proposed Reduced Lagrange Multipliers framework. In particular, the interface between solid and fluid domains is not resolved within the computational mesh for the elastic material but discretized independently, imposing the coupling condition via non-matching Lagrange multipliers. Exploiting the multiscale properties of the problem, the resulting Lagrange multipliers space is reduced to a lower-dimensional characteristic set. We present the details of the stability analysis of the resulting method considering a non-standard boundary condition that enforces a local deformation on the solid-fluid boundary. The method is validated with several numerical examples.
This study focuses on the use of model and data fusion for improving the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions of separated flows. In particular, our goal is to develop of models that not-only assimilate sparse experimental data to improve performance in computational models, but also generalize to unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the Ensemble Kalman Filtering approach (EnKF), to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via a parameterization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected velocity profiles, skin friction, and pressure coefficients for separated flows. Despite using of observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the 2D-bump and modified BFS. Significant improvement is observed in the quantities of interest, i.e., skin friction coefficient ($C_f$) and pressure coefficient ($C_p$) for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for external, unseparated flows, such as flow around a NACA-0012 airfoil without any danger of extrapolation, and that the individually calibrated terms in the SA model are targeted towards specific flow-physics wherein the calibrated production term improves the re-circulation zone while destruction improves the recovery zone.
In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense. The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense.
It is crucial to detect when an instance lies downright too far from the training samples for the machine learning model to be trusted, a challenge known as out-of-distribution (OOD) detection. For neural networks, one approach to this task consists of learning a diversity of predictors that all can explain the training data. This information can be used to estimate the epistemic uncertainty at a given newly observed instance in terms of a measure of the disagreement of the predictions. Evaluation and certification of the ability of a method to detect OOD require specifying instances which are likely to occur in deployment yet on which no prediction is available. Focusing on regression tasks, we choose a simple yet insightful model for this OOD distribution and conduct an empirical evaluation of the ability of various methods to discriminate OOD samples from the data. Moreover, we exhibit evidence that a diversity of parameters may fail to translate to a diversity of predictors. Based on the choice of an OOD distribution, we propose a new way of estimating the entropy of a distribution on predictors based on nearest neighbors in function space. This leads to a variational objective which, combined with the family of distributions given by a generative neural network, systematically produces a diversity of predictors that provides a robust way to detect OOD samples.
We explore a link between complexity and physics for circuits of given functionality. Taking advantage of the connection between circuit counting problems and the derivation of ensembles in statistical mechanics, we tie the entropy of circuits of a given functionality and fixed number of gates to circuit complexity. We use thermodynamic relations to connect the quantity analogous to the equilibrium temperature to the exponent describing the exponential growth of the number of distinct functionalities as a function of complexity. This connection is intimately related to the finite compressibility of typical circuits. Finally, we use the thermodynamic approach to formulate a framework for the obfuscation of programs of arbitrary length -- an important problem in cryptography -- as thermalization through recursive mixing of neighboring sections of a circuit, which can viewed as the mixing of two containers with ``gases of gates''. This recursive process equilibrates the average complexity and leads to the saturation of the circuit entropy, while preserving functionality of the overall circuit. The thermodynamic arguments hinge on ergodicity in the space of circuits which we conjecture is limited to disconnected ergodic sectors due to fragmentation. The notion of fragmentation has important implications for the problem of circuit obfuscation as it implies that there are circuits with same size and functionality that cannot be connected via local moves. Furthermore, we argue that fragmentation is unavoidable unless the complexity classes NP and coNP coincide, a statement that implies the collapse of the polynomial hierarchy of complexity theory to its first level.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.