亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The notion of generalized rank invariant in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. Naturally, computing these rank invariants efficiently is a prelude to computing any of these derived structures efficiently. We show that the generalized rank invariant over a finite interval $I$ of a $\mathbb{Z}^2$-indexed persistence module $M$ is equal to the generalized rank invariant of the zigzag module that is induced on the boundary of $I$. Hence, we can compute the generalized rank over $I$ by computing the barcode of the zigzag module obtained by restricting the bifiltration inducing $M$ to the boundary of $I$. If $I$ has $t$ points, this computation takes $O(t^\omega)$ time where $\omega\in[2,2.373)$ is the exponent for matrix multiplication. Among others, we apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module $M$, determine whether $M$ is interval decomposable and, if so, compute all intervals supporting its summands. Our algorithm runs in time $O(t^{2\omega})$ vastly improving upon existing algorithms for the problem.

相關內容

In this paper we focus on modules over a finite chain ring $\mathcal{R}$ of size $q^s$. We compute the density of free modules of $\mathcal{R}^n$, where we separately treat the asymptotics in $n,q$ and $s$. In particular, we focus on two cases: one where we fix the length of the module and one where we fix the rank of the module. In both cases, the density results can be bounded by the Andrews-Gordon identities. We also study the asymptotic behaviour of modules generated by random matrices over $\mathcal{R}$. Since linear codes over $\mathcal{R}$ are submodules of $\mathcal{R}^n$ we get direct implications for coding theory. For example, we show that random codes achieve the Gilbert-Varshamov bound with high probability.

A finite permutation group $G$ on $\Omega$ is called a rank 3 group if it has precisely three orbits in its induced action on $\Omega \times \Omega$. The largest permutation group on $\Omega$ having the same orbits as $G$ on $\Omega \times \Omega$ is called the 2-closure of $G$. We construct a polynomial-time algorithm which given generators of a rank 3 group computes generators of its 2-closure.

Let A(n, d) denote the maximum number of codewords in a binary code of length n and minimum Hamming distance d. Deriving upper and lower bounds on A(n, d) have been a subject for extensive research in coding theory. In this paper, we examine upper and lower bounds on A(n, d) in the high-minimum distance regime, in particular, when $d = n/2 - \Theta(\sqrt{n})$. We will first provide a lower bound based on a cyclic construction for codes of length $n= 2^m -1$ and show that $A(n, d= n/2 - 2^{c-1}\sqrt{n}) \geq n^c$, where c is an integer with $1 \leq c \leq m/2-1$. With a Fourier-analytic view of Delsarte's linear program, novel upper bounds on $A(n, n/2 - \sqrt{n})$ and $A(n, n/2 - 2 \sqrt{n})$ are obtained, and, to the best of the authors' knowledge, are the first upper bounds scaling polynomially in n for the regime with $d = n/2 - \Theta(\sqrt{n})$.

In the problem of classical group testing one aims to identify a small subset (of size $d$) diseased individuals/defective items in a large population (of size $n$). This process is based on a minimal number of suitably-designed group tests on subsets of items, where the test outcome is positive iff the given test contains at least one defective item. Motivated by physical considerations, we consider a generalized setting that includes as special cases multiple other group-testing-like models in the literature. In our setting, which subsumes as special cases a variety of noiseless and noisy group-testing models in the literature, the test outcome is positive with probability $f(x)$, where $x$ is the number of defectives tested in a pool, and $f(\cdot)$ is an arbitrary monotonically increasing (stochastic) test function. Our main contributions are as follows. 1. We present a non-adaptive scheme that with probability $1-\varepsilon$ identifies all defective items. Our scheme requires at most ${\cal O}( H(f) d\log\left(\frac{n}{\varepsilon}\right))$ tests, where $H(f)$ is a suitably defined "sensitivity parameter" of $f(\cdot)$, and is never larger than ${\cal O}\left(d^{1+o(1)}\right)$, but may be substantially smaller for many $f(\cdot)$. 2. We argue that any non-adaptive group testing scheme needs at least $\Omega \left((1-\varepsilon)h(f) d\log\left(\frac n d\right)\right)$ tests to ensure reliable recovery. Here $h(f) \geq 1$ is a suitably defined "concentration parameter" of $f(\cdot)$. 3. We prove that $\frac{H(f)}{h(f)}\in\Theta(1)$ for a variety of sparse-recovery group-testing models in the literature, and $\frac {H(f)} {h(f)} \in {\cal O}\left(d^{1+o(1)}\right)$ for any other test function.

This paper presents encoding and decoding algorithms for several families of optimal rank metric codes whose codes are in restricted forms of symmetric, alternating and Hermitian matrices. First, we show the evaluation encoding is the right choice for these codes and then we provide easily reversible encoding methods for each family. Later unique decoding algorithms for the codes are described. The decoding algorithms are interpolation-based and can uniquely correct errors for each code with rank up to $\lfloor(d-1)/2\rfloor$ in polynomial-time, where $d$ is the minimum distance of the code.

In this paper, I consider a fine-grained dichotomy of Boolean counting constraint satisfaction problem (#CSP), under the exponential time hypothesis of counting version (#ETH). Suppose $\mathscr{F}$ is a finite set of algebraic complex-valued functions defined on Boolean domain. When $\mathscr{F}$ is a subset of either two special function sets, I prove that #CSP($\mathscr{F}$) is polynomial-time solvable, otherwise it can not be computed in sub-exponential time unless #ETH fails. I also improve the result by proving the same dichotomy holds for #CSP with bounded degree (every variable appears at most constant constraints), even for #R$_3$-CSP. An important preparation before proving the result is to argue that pinning (two special unary functions $[1,0]$ and $[0,1]$ are used to reduce arity) can also keep the sub-exponential lower bound of a Boolean #CSP problem. I discuss this issue by utilizing some common methods in proving #P-hardness of counting problems. The proof illustrates the internal correlation among these commonly used methods.

We investigate robust linear regression where data may be contaminated by an oblivious adversary, i.e., an adversary than may know the data distribution but is otherwise oblivious to the realizations of the data samples. This model has been previously analyzed under strong assumptions. Concretely, $\textbf{(i)}$ all previous works assume that the covariance matrix of the features is positive definite; and $\textbf{(ii)}$ most of them assume that the features are centered (i.e. zero mean). Additionally, all previous works make additional restrictive assumption, e.g., assuming that the features are Gaussian or that the corruptions are symmetrically distributed. In this work we go beyond these assumptions and investigate robust regression under a more general set of assumptions: $\textbf{(i)}$ we allow the covariance matrix to be either positive definite or positive semi definite, $\textbf{(ii)}$ we do not necessarily assume that the features are centered, $\textbf{(iii)}$ we make no further assumption beyond boundedness (sub-Gaussianity) of features and measurement noise. Under these assumption we analyze a natural SGD variant for this problem and show that it enjoys a fast convergence rate when the covariance matrix is positive definite. In the positive semi definite case we show that there are two regimes: if the features are centered we can obtain a standard convergence rate; otherwise the adversary can cause any learner to fail arbitrarily.

This paper addresses two questions: (a) can we identify a sensible class of 2-parameter persistence modules on which the rank invariant is complete? (b) can we determine efficiently whether a given 2-parameter persistence module belongs to this class? We provide positive answers to both questions, and our class of interest is that of rectangle-decomposable modules. Our contributions include: on the one hand, a proof that the rank invariant is complete on rectangle-decomposable modules, together with an inclusion-exclusion formula for counting the multiplicities of the summands; on the other hand, algorithms to check whether a module induced in homology by a bifiltration is rectangle-decomposable, and to decompose it in the affirmative, with a better complexity than state-of-the-art decomposition methods for general 2-parameter persistence modules. Our algorithms are backed up by a new structure theorem, whereby a 2-parameter persistence module is rectangle-decomposable if, and only if, its restrictions to squares are. This local characterization is key to the efficiency of our algorithms, and it generalizes previous conditions derived for the smaller class of block-decomposable modules. It also admits an algebraic formulation that turns out to be a weaker version of the one for block-decomposability. By contrast, we show that general interval-decomposability does not admit such a local characterization, even when locality is understood in a broad sense. Our analysis focuses on the case of modules indexed over finite grids, the more general cases are left as future work.

We introduce a methodology for robust Bayesian estimation with robust divergence (e.g., density power divergence or {\gamma}-divergence), indexed by a single tuning parameter. It is well known that the posterior density induced by robust divergence gives highly robust estimators against outliers if the tuning parameter is appropriately and carefully chosen. In a Bayesian framework, one way to find the optimal tuning parameter would be using evidence (marginal likelihood). However, we numerically illustrate that evidence induced by the density power divergence does not work to select the optimal tuning parameter since robust divergence is not regarded as a statistical model. To overcome the problems, we treat the exponential of robust divergence as an unnormalized statistical model, and we estimate the tuning parameter via minimizing the Hyvarinen score. We also provide adaptive computational methods based on sequential Monte Carlo (SMC) samplers, which enables us to obtain the optimal tuning parameter and samples from posterior distributions simultaneously. The empirical performance of the proposed method through simulations and an application to real data are also provided.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

北京阿比特科技有限公司