亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unlabeled sensing is the problem of solving a linear system of equations, where the right-hand-side vector is known only up to a permutation. In this work, we study fields of rational functions related to symmetric polynomials and their images under a linear projection of the variables; as a consequence, we establish that the solution to an n-dimensional unlabeled sensing problem with generic data can be obtained as the unique solution to a system of n + 1 polynomial equations of degrees 1, 2, . . . , n + 1 in n unknowns. Besides the new theoretical insights, this development offers the potential for scaling up algebraic unlabeled sensing algorithms.

相關內容

With the application of high-frequency communication and extremely large MIMO (XL-MIMO), the near-field effect has become increasingly apparent. The near-field channel estimation and position estimation problems both rely on the Angle of Arrival (AoA) and the Curvature of Arrival (CoA) estimation. However, in the near-field channel model, the coupling of AoA and CoA information poses a challenge to the estimation of the near-field channel. This paper proposes a Joint Autocorrelation and Cross-correlation (JAC) scheme to decouple AoA and CoA estimation. Based on the JAC scheme, we propose two specific near-field estimation algorithms, namely Inverse Sinc Function (JAC-ISF) and Gradient Descent (JAC-GD) algorithms. Finally, we analyzed the time complexity of the JAC scheme and the cramer-rao lower bound (CRLB) for near-field position estimation. The simulation experiment results show that the algorithm designed based on JAC scheme can solve the problem of coupled CoA and AoA information in near-field estimation, thereby improving the algorithm performance. The JAC-GD algorithm shows significant performance in channel estimation and position estimation at different SNRs, snapshot points, and communication distances compared to other algorithms. This indicates that the JAC-GD algorithm can achieve more accurate channel and position estimation results while saving time overhead.

Inductive reasoning - the process of inferring general rules from a small number of observations - is a fundamental aspect of human intelligence. Recent works suggest that large language models (LLMs) can engage in inductive reasoning by sampling multiple hypotheses about the rules and selecting the one that best explains the observations. However, due to the IID sampling, semantically redundant hypotheses are frequently generated, leading to significant wastage of compute. In this paper, we 1) demonstrate that increasing the temperature to enhance the diversity is limited due to text degeneration issue, and 2) propose a novel method to improve the diversity while maintaining text quality. We first analyze the effect of increasing the temperature parameter, which is regarded as the LLM's diversity control, on IID hypotheses. Our analysis shows that as temperature rises, diversity and accuracy of hypotheses increase up to a certain point, but this trend saturates due to text degeneration. To generate hypotheses that are more semantically diverse and of higher quality, we propose a novel approach inspired by human inductive reasoning, which we call Mixture of Concepts (MoC). When applied to several inductive reasoning benchmarks, MoC demonstrated significant performance improvements compared to standard IID sampling and other approaches.

Although diffusion models have achieved remarkable success in the field of image generation, their latent space remains under-explored. Current methods for identifying semantics within latent space often rely on external supervision, such as textual information and segmentation masks. In this paper, we propose a method to identify semantic attributes in the latent space of pre-trained diffusion models without any further training. By projecting the Jacobian of the targeted semantic region into a low-dimensional subspace which is orthogonal to the non-masked regions, our approach facilitates precise semantic discovery and control over local masked areas, eliminating the need for annotations. We conducted extensive experiments across multiple datasets and various architectures of diffusion models, achieving state-of-the-art performance. In particular, for some specific face attributes, the performance of our proposed method even surpasses that of supervised approaches, demonstrating its superior ability in editing local image properties.

An optimization-based strategy is proposed for coupling three-dimensional and one-dimensional problems (3D-1D coupling) in the context of soil-root interaction simulations. This strategy, originally designed to tackle generic 3D-1D coupled problems with discontinuous solutions, is here extended to the case of non-linear problems and applied, for the first time, along with a virtual element discretization of the 3D soil sample. This further enhances the capability of the method to handle geometrical complexities, allowing to easily mesh domains characterized, for instance, by the presence of stones and other impervious obstacles of arbitrary shape. A discrete-hybrid tip-tracking strategy is adopted to model both the root growth and the evolution in time of the water flux, the pressure head and the water content, both in the roots and in the surrounding soil sample. By choosing proper rules for the generation of branches, realistic root-network configurations are obtained. Several numerical examples are proposed, proving both the accuracy of the adopted method and its applicability in realistic and large scale simulations.

While deep generative models (DGMs) have gained popularity, their susceptibility to biases and other inefficiencies that lead to undesirable outcomes remains an issue. With their growing complexity, there is a critical need for early detection of issues to achieve desired results and optimize resources. Hence, we introduce a progressive analysis framework to monitor the training process of DGMs. Our method utilizes dimensionality reduction techniques to facilitate the inspection of latent representations, the generated and real distributions, and their evolution across training iterations. This monitoring allows us to pause and fix the training method if the representations or distributions progress undesirably. This approach allows for the analysis of a models' training dynamics and the timely identification of biases and failures, minimizing computational loads. We demonstrate how our method supports identifying and mitigating biases early in training a Generative Adversarial Network (GAN) and improving the quality of the generated data distribution.

We study the problem of modeling a non-linear dynamical system when given a time series by deriving equations directly from the data. Despite the fact that time series data are given as input, models for dynamics and estimation algorithms that incorporate long-term temporal dependencies are largely absent from existing studies. In this paper, we introduce a latent state to allow time-dependent modeling and formulate this problem as a dynamics estimation problem in latent states. We face multiple technical challenges, including (1) modeling latent non-linear dynamics and (2) solving circular dependencies caused by the presence of latent states. To tackle these challenging problems, we propose a new method, Latent Non-Linear equation modeling (LaNoLem), that can model a latent non-linear dynamical system and a novel alternating minimization algorithm for effectively estimating latent states and model parameters. In addition, we introduce criteria to control model complexity without human intervention. Compared with the state-of-the-art model, LaNoLem achieves competitive performance for estimating dynamics while outperforming other methods in prediction.

We consider a distributed voting problem with a set of agents that are partitioned into disjoint groups and a set of obnoxious alternatives. Agents and alternatives are represented by points in a metric space. The goal is to compute the alternative that maximizes the total distance from all agents using a two-step mechanism which, given some information about the distances between agents and alternatives, first chooses a representative alternative for each group of agents, and then declares one of them as the overall winner. Due to the restricted nature of the mechanism and the potentially limited information it has to make its decision, it might not be always possible to choose the optimal alternative. We show tight bounds on the distortion of different mechanisms depending on the amount of the information they have access to; in particular, we study full-information and ordinal mechanisms.

A challenge in high-dimensional inverse problems is developing iterative solvers to find the accurate solution of regularized optimization problems with low computational cost. An important example is computed tomography (CT) where both image and data sizes are large and therefore the forward model is costly to evaluate. Since several years algorithms from stochastic optimization are used for tomographic image reconstruction with great success by subsampling the data. Here we propose a novel way how stochastic optimization can be used to speed up image reconstruction by means of image domain sketching such that at each iteration an image of different resolution is being used. Hence, we coin this algorithm ImaSk. By considering an associated saddle-point problem, we can formulate ImaSk as a gradient-based algorithm where the gradient is approximated in the same spirit as the stochastic average gradient am\'elior\'e (SAGA) and uses at each iteration one of these multiresolution operators at random. We prove that ImaSk is linearly converging for linear forward models with strongly convex regularization functions. Numerical simulations on CT show that ImaSk is effective and increasing the number of multiresolution operators reduces the computational time to reach the modeled solution.

Objective: Configuring a prosthetic leg is an integral part of the fitting process, but the personalization of a multi-modal powered knee-ankle prosthesis is often too complex to realize in a clinical environment. This paper develops both the technical means to individualize a hybrid kinematic-impedance controller for variable-incline walking and sit-stand transitions, and an intuitive Clinical Tuning Interface (CTI) that allows prosthetists to directly modify the controller behavior. Methods: Utilizing an established method for predicting kinematic gait individuality alongside a new parallel approach for kinetic individuality, we applied tuned characteristics exclusively from level-ground walking to personalize continuous-phase/task models of joint kinematics and impedance. To take advantage of this method, we developed a CTI that translates common clinical tuning parameters into model adjustments. We then conducted a case study involving an above-knee amputee participant where a prosthetist iteratively tuned the prosthesis in a simulated clinical session involving walking and sit-stand transitions. Results: The prosthetist fully tuned the multi-activity prosthesis controller in under 20 min. Each iteration of tuning (i.e., observation, parameter adjustment, and model reprocessing) took 2 min on average for walking and 1 min on average for sit-stand. The tuned behavior changes were appropriately manifested in the commanded prosthesis torques, both at the tuned tasks and across untuned tasks (inclines). Conclusion: The CTI leveraged able-bodied trends to efficiently personalize a wide array of walking tasks and sit-stand transitions. A case-study validated the CTI tuning method and demonstrated the efficiency necessary for powered knee-ankle prostheses to become clinically viable.

The use of neural networks for solving differential equations is practically difficult due to the exponentially increasing runtime of autodifferentiation when computing high-order derivatives. We propose $n$-TangentProp, the natural extension of the TangentProp formalism \cite{simard1991tangent} to arbitrarily many derivatives. $n$-TangentProp computes the exact derivative $d^n/dx^n f(x)$ in quasilinear, instead of exponential time, for a densely connected, feed-forward neural network $f$ with a smooth, parameter-free activation function. We validate our algorithm empirically across a range of depths, widths, and number of derivatives. We demonstrate that our method is particularly beneficial in the context of physics-informed neural networks where \ntp allows for significantly faster training times than previous methods and has favorable scaling with respect to both model size and loss-function complexity as measured by the number of required derivatives. The code for this paper can be found at //github.com/kyrochi/n\_tangentprop.

北京阿比特科技有限公司