亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Encoder-decoder networks become a popular choice for various medical image segmentation tasks. When they are trained with a standard loss function, these networks are not explicitly enforced to preserve the shape integrity of an object in an image. However, this ability of the network is important to obtain more accurate results, especially when there is a low-contrast difference between the object and its surroundings. In response to this issue, this work introduces a new shape-aware loss function, which we name FourierLoss. This loss function relies on quantifying the shape dissimilarity between the ground truth and the predicted segmentation maps through the Fourier descriptors calculated on their objects, and penalizing this dissimilarity in network training. Different than the previous studies, FourierLoss offers an adaptive loss function with trainable hyperparameters that control the importance of the level of the shape details that the network is enforced to learn in the training process. This control is achieved by the proposed adaptive loss update mechanism, which end-to-end learns the hyperparameters simultaneously with the network weights by backpropagation. As a result of using this mechanism, the network can dynamically change its attention from learning the general outline of an object to learning the details of its contour points, or vice versa, in different training epochs. Working on 2879 computed tomography images of 93 subjects, our experiments revealed that the proposed adaptive shape-aware loss function led to statistically significantly better results for liver segmentation, compared to its counterparts.

相關內容

損失函數,在AI中亦稱呼距離函數,度量函數。此處的距離代表的是抽象性的,代表真實數據與預測數據之間的誤差。損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。

Large pre-trained vision-language models such as CLIP have demonstrated great potential in zero-shot transferability to downstream tasks. However, to attain optimal performance, the manual selection of prompts is necessary to improve alignment between the downstream image distribution and the textual class descriptions. This manual prompt engineering is the major challenge for deploying such models in practice since it requires domain expertise and is extremely time-consuming. To avoid non-trivial prompt engineering, recent work Context Optimization (CoOp) introduced the concept of prompt learning to the vision domain using learnable textual tokens. While CoOp can achieve substantial improvements over manual prompts, its learned context is worse generalizable to wider unseen classes within the same dataset. In this work, we present Prompt Learning with Reparameterization Encoder (PRE) - a simple and efficient method that enhances the generalization ability of the learnable prompt to unseen classes while maintaining the capacity to learn Base classes. Instead of directly optimizing the prompts, PRE employs a prompt encoder to reparameterize the input prompt embeddings, enhancing the exploration of task-specific knowledge from few-shot samples. Experiments and extensive ablation studies on 8 benchmarks demonstrate that our approach is an efficient method for prompt learning. Specifically, PRE achieves a notable enhancement of 5.60% in average accuracy on New classes and 3% in Harmonic mean compared to CoOp in the 16-shot setting, all achieved within a good training time.

Mixed-precision quantization is a popular approach for compressing deep neural networks (DNNs). However, it is challenging to scale the performance efficiently with mixed-precision DNNs given the current FPGA architecture and conventional accelerator dataflows. In this work, we enhance the FPGA's capability for accelerating mixed-precision DNNs by proposing M4BRAM, a novel compute-in-block RAM (BRAM) architecture that can compute mixed-precision matrix-matrix multiplication. On the precision side, M4BRAM supports a wide range of mixed-precision DNN configurations -- the weight precision can be 2/4/8 bits while the activation precision can vary from 2 to 8 bits. On the dataflow side, M4BRAM leverages a novel in-BRAM data duplication scheme to achieve high hardware utilization. Moreover, during M4BRAM computation, other FPGA resources can seamlessly access its data without the need for a separate buffer. Hence, unlike prior compute-in-BRAM proposals, M4BRAM can simultaneously perform mixed-precision computation and maintain full functionality as a memory unit to \textit{truly} complement the existing compute resources on FPGAs. Experiments show that adding M4BRAM to a tiled DNN accelerator can achieve an average speedup of 2.16$\times$ across various DNNs on the ImageNet classification task while incurring a negligible accuracy loss of $<$ 0.5%. Compared to the same tiled accelerator that employs a prior compute-in-BRAM architecture, M4BRAM delivers 1.43$\times$ higher performance on average across various DNNs.

Users often have trouble formulating their information needs into words on the first try when searching online. This can lead to frustration, as they may have to reformulate their queries when retrieved information is not relevant. This can be due to a lack of familiarity with the specific terminology related to their search topic, or because queries are ambiguous and related to multiple topics. Most modern search engines have interactive features that suggest clarifications or similar queries based on what others have searched for. However, the proposed models are either based on a single interaction or evaluated on search logs, hindering the naturalness of the interactions. In this paper, we introduce CIRCLE, a generative model for multi-turn query Clarifications wIth ReinforCement LEarning that leverages multi-turn interactions through a user simulation framework. Our model aims at generating a diverse set of query clarifications using a pretrained language model fine-tuned using reinforcement learning. We evaluate it against well established google suggestions using a user simulation framework.

We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.

Modern reinforcement learning (RL) can be categorized into online and offline variants. As a pivotal aspect of both online and offline RL, current research on the Bellman equation revolves primarily around optimization techniques and performance enhancement rather than exploring the inherent structural properties of the Bellman error, such as its distribution characteristics. This study investigates the distribution of the Bellman approximation error in both online and offline settings through iterative exploration of the Bellman equation. We observed that both in online RL and offline RL, the Bellman error conforms to a Logistic distribution. Building upon this discovery, this study employed the Logistics maximum likelihood function (LLoss) as an alternative to the commonly used MSE Loss, assuming that Bellman errors adhere to a normal distribution. We validated our hypotheses through extensive numerical experiments across diverse online and offline environments. In particular, we applied corrections to the loss function across various baseline algorithms and consistently observed that the loss function with Logistic corrections outperformed the MSE counterpart significantly. Additionally, we conducted Kolmogorov-Smirnov tests to confirm the reliability of the Logistic distribution. This study's theoretical and empirical insights provide valuable groundwork for future investigations and enhancements centered on the distribution of Bellman errors.

Deep learning (DL) has shown remarkable success in various medical imaging data analysis applications. However, it remains challenging for DL models to achieve good generalization, especially when the training and testing datasets are collected at sites with different scanners, due to domain shift caused by differences in data distributions. Domain adaptation has emerged as an effective means to address this challenge by mitigating domain gaps in medical imaging applications. In this review, we specifically focus on domain adaptation approaches for DL-based medical image segmentation. We first present the motivation and background knowledge underlying domain adaptations, then provide a comprehensive review of domain adaptation applications in medical image segmentations, and finally discuss the challenges, limitations, and future research trends in the field to promote the methodology development of domain adaptation in the context of medical image segmentation. Our goal was to provide researchers with up-to-date references on the applications of domain adaptation in medical image segmentation studies.

In supervised continual learning, a deep neural network (DNN) is updated with an ever-growing data stream. Unlike the offline setting where data is shuffled, we cannot make any distributional assumptions about the data stream. Ideally, only one pass through the dataset is needed for computational efficiency. However, existing methods are inadequate and make many assumptions that cannot be made for real-world applications, while simultaneously failing to improve computational efficiency. In this paper, we propose a novel continual learning method, SIESTA based on wake/sleep framework for training, which is well aligned to the needs of on-device learning. The major goal of SIESTA is to advance compute efficient continual learning so that DNNs can be updated efficiently using far less time and energy. The principal innovations of SIESTA are: 1) rapid online updates using a rehearsal-free, backpropagation-free, and data-driven network update rule during its wake phase, and 2) expedited memory consolidation using a compute-restricted rehearsal policy during its sleep phase. For memory efficiency, SIESTA adapts latent rehearsal using memory indexing from REMIND. Compared to REMIND and prior arts, SIESTA is far more computationally efficient, enabling continual learning on ImageNet-1K in under 2 hours on a single GPU; moreover, in the augmentation-free setting it matches the performance of the offline learner, a milestone critical to driving adoption of continual learning in real-world applications.

Numerous evaluation metrics have been developed for natural language generation tasks, but their effectiveness in evaluating stories is limited as they are not specifically tailored to assess intricate aspects of storytelling, such as fluency and interestingness. In this paper, we introduce DELTASCORE, a novel methodology that employs perturbation techniques for the evaluation of nuanced story aspects. Our central proposition posits that the extent to which a story excels in a specific aspect (e.g., fluency) correlates with the magnitude of its susceptibility to particular perturbations (e.g., the introduction of typos). Given this, we measure the quality of an aspect by calculating the likelihood difference between pre- and post-perturbation states using pre-trained language models. We compare DELTASCORE with existing metrics on storytelling datasets from two domains in five fine-grained story aspects: fluency, coherence, relatedness, logicality, and interestingness. DELTASCORE demonstrates remarkable performance, revealing a surprising finding that a specific perturbation proves highly effective in capturing multiple aspects.

Neural language models are probabilistic models of human text. They are predominantly trained using maximum likelihood estimation (MLE), which is equivalent to minimizing the forward cross-entropy between the empirical data distribution and the model distribution. However, various degeneration phenomena are still widely observed when decoding from the distributions learned by such models. We establish that the forward cross-entropy is suboptimal as a distance metric for aligning human and model distribution due to its (1) recall-prioritization (2) negative diversity ignorance and (3) train-test mismatch. In this paper, we propose Earth Mover Distance Optimization (EMO) for auto-regressive language modeling. EMO capitalizes on the inherent properties of earth mover distance to address the aforementioned challenges. Due to the high complexity of direct computation, we further introduce a feasible upper bound for EMO to ease end-to-end training. Upon extensive evaluation of language models trained using EMO and MLE. We find that EMO demonstrates a consistently better language modeling performance than MLE across domains. Moreover, EMO demonstrates noteworthy enhancements in downstream performance with minimal fine-tuning on merely 25,000 sentences. This highlights the tremendous potential of EMO as a lightweight calibration method for enhancing large-scale pre-trained language models.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

北京阿比特科技有限公司