Wireless Body Sensor Networks (WBSNs) is one of the greatest growing technology for sensing and performing various tasks. The information transmitted in the WBSNs is vulnerable to cyber-attacks, therefore security is very important. Denial of Service (DoS) attacks are considered one of the major threats against WBSNs security. In DoS attacks, an adversary targets to degrade and shut down the efficient use of the network and disrupt the services in the network causing them inaccessible to its intended users. If sensitive information of patients in WBSNs, such as the medical history is accessed by unauthorized users, the patient may suffer much more than the disease itself, it may result in loss of life. This paper proposes a User-Based authentication scheme to mitigate DoS attacks in WBSNs. A five-phase User-Based authentication DoS mitigation scheme for WBSNs is designed by integrating Elliptic Curve Cryptography (ECC) with Rivest Cipher 4 (RC4) to ensure a strong authentication process that will only allow authorized users to access nodes on WBSNs.
This study presents a novel approach for touch sensing using semi-elastic textile surfaces that does not require the placement of additional sensors in the sensing area, instead relying on sensors located on the border of the textile. The proposed approach is demonstrated through experiments involving an elastic Jersey fabric and a variety of machine-learning models. The performance of one particular border-based sensor design is evaluated in depth. By using visual markers, the best-performing visual sensor arrangement predicts a single touch point with a mean squared error of 1.36 mm on an area of 125mm by 125mm. We built a textile only prototype that is able to classify touch at three indent levels (0, 15, and 20 mm) with an accuracy of 82.85%. Our results suggest that this approach has potential applications in wearable technology and smart textiles, making it a promising avenue for further exploration in these fields.
The proliferation of connected devices through Internet connectivity presents both opportunities for smart applications and risks to security and privacy. It is vital to proactively address these concerns to fully leverage the potential of the Internet of Things. IoT services where one data owner serves multiple clients, like smart city transportation, smart building management and healthcare can offer benefits but also bring cybersecurity and data privacy risks. For example, in healthcare, a hospital may collect data from medical devices and make it available to multiple clients such as researchers and pharmaceutical companies. This data can be used to improve medical treatments and research but if not protected, it can also put patients' personal information at risk. To ensure the benefits of these services, it is important to implement proper security and privacy measures. In this paper, we propose a symmetric searchable encryption scheme with dynamic updates on a database that has a single owner and multiple clients for IoT environments. Our proposed scheme supports both forward and backward privacy. Additionally, our scheme supports a decentralized storage environment in which data owners can outsource data across multiple servers or even across multiple service providers to improve security and privacy. Further, it takes a minimum amount of effort and costs to revoke a client's access to our system at any time. The performance and formal security analyses of the proposed scheme show that our scheme provides better functionality, and security and is more efficient in terms of computation and storage than the closely related works.
Degraded broadcast channels (DBC) are a typical multi-user communications scenario. There exist classic transmission methods, such as superposition coding with successive interference cancellation, to achieve the DBC capacity region. However, semantic communications method over DBC remains lack of in-depth research. To address this, we design a fusion-based multi-user semantic communications system for wireless image transmission over DBC in this paper. The proposed architecture supports a transmitter extracting semantic features for two users separately, and learns to dynamically fuse these semantic features into a joint latent representation for broadcasting. The key here is to design a flexible image semantic fusion (FISF) module to fuse the semantic features of two users, and to use a multi-layer perceptron (MLP) based neural network to adjust the weights of different user semantic features for flexible adaptability to different users channels. Experiments present the semantic performance region based on the peak signal-to-noise ratio (PSNR) of both users, and show that the proposed system dominates the traditional methods.
The research on the sixth-generation (6G) wireless communications for the development of future mobile communication networks has been officially launched around the world. 6G networks face multifarious challenges, such as resource-constrained mobile devices, difficult wireless resource management, high complexity of heterogeneous network architectures, explosive computing and storage requirements, privacy and security threats. To address these challenges, deploying blockchain and artificial intelligence (AI) in 6G networks may realize new breakthroughs in advancing network performances in terms of security, privacy, efficiency, cost, and more. In this paper, we provide a detailed survey of existing works on the application of blockchain and AI to 6G wireless communications. More specifically, we start with a brief overview of blockchain and AI. Then, we mainly review the recent advances in the fusion of blockchain and AI, and highlight the inevitable trend of deploying both blockchain and AI in wireless communications. Furthermore, we extensively explore integrating blockchain and AI for wireless communication systems, involving secure services and Internet of Things (IoT) smart applications. Particularly, some of the most talked-about key services based on blockchain and AI are introduced, such as spectrum management, computation allocation, content caching, and security and privacy. Moreover, we also focus on some important IoT smart applications supported by blockchain and AI, covering smart healthcare, smart transportation, smart grid, and unmanned aerial vehicles (UAVs). We also analyze the open issues and research challenges for the joint deployment of blockchain and AI in 6G wireless communications. Lastly, based on lots of existing meaningful works, this paper aims to provide a comprehensive survey of blockchain and AI in 6G networks.
Automatic sensor-based detection of motor failures such as bearing faults is crucial for predictive maintenance in various industries. Numerous methodologies have been developed over the years to detect bearing faults. Despite the appearance of numerous different approaches for diagnosing faults in motors have been proposed, vibration-based methods have become the de facto standard and the most commonly used techniques. However, acquiring reliable vibration signals, especially from rotating machinery, can sometimes be infeasibly difficult due to challenging installation and operational conditions (e.g., variations on accelerometer locations on the motor body), which will not only alter the signal patterns significantly but may also induce severe artifacts. Moreover, sensors are costly and require periodic maintenance to sustain a reliable signal acquisition. To address these drawbacks and void the need for vibration sensors, in this study, we propose a novel sound-to-vibration transformation method that can synthesize realistic vibration signals directly from the sound measurements regardless of the working conditions, fault type, and fault severity. As a result, using this transformation, the data acquired by a simple sound recorder, e.g., a mobile phone, can be transformed into the vibration signal, which can then be used for fault detection by a pre-trained model. The proposed method is extensively evaluated over the benchmark Qatar University Dual-Machine Bearing Fault Benchmark dataset (QU-DMBF), which encapsulates sound and vibration data from two different machines operating under various conditions. Experimental results show that this novel approach can synthesize such realistic vibration signals that can directly be used for reliable and highly accurate motor health monitoring.
In recent decades, due to the emerging requirements of computation acceleration, cloud FPGAs have become popular in public clouds. Major cloud service providers, e.g. AWS and Microsoft Azure have provided FPGA computing resources in their infrastructure and have enabled users to design and deploy their own accelerators on these FPGAs. Multi-tenancy FPGAs, where multiple users can share the same FPGA fabric with certain types of isolation to improve resource efficiency, have already been proved feasible. However, this also raises security concerns. Various types of side-channel attacks targeting multi-tenancy FPGAs have been proposed and validated. The awareness of security vulnerabilities in the cloud has motivated cloud providers to take action to enhance the security of their cloud environments. In FPGA security research papers, researchers always perform attacks under the assumption that attackers successfully co-locate with victims and are aware of the existence of victims on the same FPGA board. However, the way to reach this point, i.e., how attackers secretly obtain information regarding accelerators on the same fabric, is constantly ignored despite the fact that it is non-trivial and important for attackers. In this paper, we present a novel fingerprinting attack to gain the types of co-located FPGA accelerators. We utilize a seemingly non-malicious benchmark accelerator to sniff the communication link and collect performance traces of the FPGA-host communication link. By analyzing these traces, we are able to achieve high classification accuracy for fingerprinting co-located accelerators, which proves that attackers can use our method to perform cloud FPGA accelerator fingerprinting with a high success rate. As far as we know, this is the first paper targeting multi-tenant FPGA accelerator fingerprinting with the communication side-channel.
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.
Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.