亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most of the scientific literature on causal modeling considers the structural framework of Pearl and the potential-outcome framework of Rubin to be formally equivalent, and therefore interchangeably uses the do-notation and the potential-outcome subscript notation to write counterfactual outcomes. In this paper, we agnostically superimpose the two causal models to specify under which mathematical conditions structural counterfactual outcomes and potential outcomes need to, do not need to, can, or cannot be equal (almost surely or law). Our comparison reminds that a structural causal model and a Rubin causal model compatible with the same observations do not have to coincide, and highlights real-world problems where they even cannot correspond. Then, we examine common claims and practices from the causal-inference literature in the light of these results. In doing so, we aim at clarifying the relationship between the two causal frameworks, and the interpretation of their respective counterfactuals.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 多樣性 · INFORMS · Performance · 特征提取 ·
2024 年 5 月 1 日

Exploring the semantic context in scene images is essential for indoor scene recognition. However, due to the diverse intra-class spatial layouts and the coexisting inter-class objects, modeling contextual relationships to adapt various image characteristics is a great challenge. Existing contextual modeling methods for scene recognition exhibit two limitations: 1) They typically model only one kind of spatial relationship among objects within scenes in an artificially predefined manner, with limited exploration of diverse spatial layouts. 2) They often overlook the differences in coexisting objects across different scenes, suppressing scene recognition performance. To overcome these limitations, we propose SpaCoNet, which simultaneously models Spatial relation and Co-occurrence of objects guided by semantic segmentation. Firstly, the Semantic Spatial Relation Module (SSRM) is constructed to model scene spatial features. With the help of semantic segmentation, this module decouples the spatial information from the scene image and thoroughly explores all spatial relationships among objects in an end-to-end manner. Secondly, both spatial features from the SSRM and deep features from the Image Feature Extraction Module are allocated to each object, so as to distinguish the coexisting object across different scenes. Finally, utilizing the discriminative features above, we design a Global-Local Dependency Module to explore the long-range co-occurrence among objects, and further generate a semantic-guided feature representation for indoor scene recognition. Experimental results on three widely used scene datasets demonstrate the effectiveness and generality of the proposed method.

The aim of this article is to derive discontinuous finite elements vector spaces which can be put in a discrete de-Rham complex for which an harmonic gap property may be proven. First, discontinuous finite element spaces inspired by classical N{\'e}d{\'e}lec or Raviart-Thomas conforming space are considered, and we prove that by relaxing the normal or tangential constraint, discontinuous spaces ensuring the harmonic gap property can be built. Then the triangular case is addressed, for which we prove that such a property holds for the classical discontinuous finite element space for vectors. On Cartesian meshes, this result does not hold for the classical discontinuous finite element space for vectors. We then show how to use the de-Rham complex found for triangular meshes for enriching the finite element space on Cartesian meshes in order to recover a de-Rham complex, on which the same harmonic gap property is proven.

Non-linear mixed effects modeling and simulation (NLME M&S) is evaluated to be used for standardization with longitudinal data in presence of confounders. Standardization is a well-known method in causal inference to correct for confounding by analyzing and combining results from subgroups of patients. We show that non-linear mixed effects modeling is a particular implementation of standardization that conditions on individual parameters described by the random effects of the mixed effects model. Our motivation is that in pharmacometrics NLME M&S is routinely used to analyze clinical trials and to predict and compare potential outcomes of the same patient population under different treatment regimens. Such a comparison is a causal question sometimes referred to as causal prediction. Nonetheless, NLME M&S is rarely positioned as a method for causal prediction. As an example, a simulated clinical trial is used that assumes treatment confounder feedback in which early outcomes can cause deviations from the planned treatment schedule. Being interested in the outcome for the hypothetical situation that patients adhere to the planned treatment schedule, we put assumptions in a causal diagram. From the causal diagram, conditional independence assumptions are derived either using latent conditional exchangeability, conditioning on the individual parameters, or using sequential conditional exchangeability, conditioning on earlier outcomes. Both conditional independencies can be used to estimate the estimand of interest, e.g., with standardization, and they give unbiased estimates.

Recent work has demonstrated the utility of introducing non-linearity through repeat-until-success (RUS) sub-routines into quantum circuits for generative modeling. As a follow-up to this work, we investigate two questions of relevance to the quantum algorithms and machine learning communities: Does introducing this form of non-linearity make the learning model classically simulatable due to the deferred measurement principle? And does introducing this form of non-linearity make the overall model's training more unstable? With respect to the first question, we demonstrate that the RUS sub-routines do not allow us to trivially map this quantum model to a classical one, whereas a model without RUS sub-circuits containing mid-circuit measurements could be mapped to a classical Bayesian network due to the deferred measurement principle of quantum mechanics. This strongly suggests that the proposed form of non-linearity makes the model classically in-efficient to simulate. In the pursuit of the second question, we train larger models than previously shown on three different probability distributions, one continuous and two discrete, and compare the training performance across multiple random trials. We see that while the model is able to perform exceptionally well in some trials, the variance across trials with certain datasets quantifies its relatively poor training stability.

This contribution introduces the idea of refinement patterns for the generation of optimal meshes in the context of the Finite Element Method. The main idea is to generate a library of possible patterns on which elements can be refined and use this library to inform an h adaptive code on how to handle complex refinements in regions of interest. There are no restrictions on the type of elements that can be refined, and the patterns can be generated for any element type. The main advantage of this approach is that it allows for the generation of optimal meshes in a systematic way where, even if a certain pattern is not available, it can easily be included through a simple text file with nodes and sub-elements. The contribution presents a detailed methodology for incorporating refinement patterns into h adaptive Finite Element Method codes and demonstrates the effectiveness of the approach through mesh refinement of problems with complex geometries.

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.

We study the data-driven selection of causal graphical models using constraint-based algorithms, which determine the existence or non-existence of edges (causal connections) in a graph based on testing a series of conditional independence hypotheses. In settings where the ultimate scientific goal is to use the selected graph to inform estimation of some causal effect of interest (e.g., by selecting a valid and sufficient set of adjustment variables), we argue that a "cautious" approach to graph selection should control the probability of falsely removing edges and prefer dense, rather than sparse, graphs. We propose a simple inversion of the usual conditional independence testing procedure: to remove an edge, test the null hypothesis of conditional association greater than some user-specified threshold, rather than the null of independence. This equivalence testing formulation to testing independence constraints leads to a procedure with desriable statistical properties and behaviors that better match the inferential goals of certain scientific studies, for example observational epidemiological studies that aim to estimate causal effects in the face of causal model uncertainty. We illustrate our approach on a data example from environmental epidemiology.

Combined experiments and computational modelling are used to increase understanding of the suitability of the Single-Edge Notch Tension (SENT) test for assessing hydrogen embrittlement susceptibility. The SENT tests were designed to provide the mode I threshold stress intensity factor ($K_{\text{th}}$) for hydrogen-assisted cracking of a C110 steel in two corrosive environments. These were accompanied by hydrogen permeation experiments to relate the environments to the absorbed hydrogen concentrations. A coupled phase-field-based deformation-diffusion-fracture model is then employed to simulate the SENT tests, predicting $K_{\text{th}}$ in good agreement with the experimental results and providing insights into the hydrogen absorption-diffusion-cracking interactions. The suitability of SENT testing and its optimal characteristics (e.g., test duration) are discussed in terms of the various simultaneous active time-dependent phenomena, triaxiality dependencies, and regimes of hydrogen embrittlement susceptibility.

Quantum hypothesis testing (QHT) has been traditionally studied from the information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of samples of an unknown state. In this paper, we study the sample complexity of QHT, wherein the goal is to determine the minimum number of samples needed to reach a desired error probability. By making use of the wealth of knowledge that already exists in the literature on QHT, we characterize the sample complexity of binary QHT in the symmetric and asymmetric settings, and we provide bounds on the sample complexity of multiple QHT. In more detail, we prove that the sample complexity of symmetric binary QHT depends logarithmically on the inverse error probability and inversely on the negative logarithm of the fidelity. As a counterpart of the quantum Stein's lemma, we also find that the sample complexity of asymmetric binary QHT depends logarithmically on the inverse type II error probability and inversely on the quantum relative entropy. We then provide lower and upper bounds on the sample complexity of multiple QHT, with it remaining an intriguing open question to improve these bounds. The final part of our paper outlines and reviews how sample complexity of QHT is relevant to a broad swathe of research areas and can enhance understanding of many fundamental concepts, including quantum algorithms for simulation and search, quantum learning and classification, and foundations of quantum mechanics. As such, we view our paper as an invitation to researchers coming from different communities to study and contribute to the problem of sample complexity of QHT, and we outline a number of open directions for future research.

We establish necessary and sufficient conditions for invertiblility of symmetric three-by-three block matrices having a double saddle-point structure that guarantee the unique solvability of double saddle-point systems. We consider various scenarios, including the case where all diagonal blocks are allowed to be rank deficient. Under certain conditions related to the ranks of the blocks and intersections of their kernels, an explicit formula for the inverse is derived.

北京阿比特科技有限公司