亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data. However, the proper valuation of shared data in this collaborative process remains insufficiently addressed. In this work, we frame FL as a marketplace of models, where clients act as both buyers and sellers, engaging in model trading. This FL market allows clients to gain monetary reward by selling their own models and improve local model performance through the purchase of others' models. We propose an auction-based solution to ensure proper pricing based on performance gain. Incentive mechanisms are designed to encourage clients to truthfully reveal their model valuations. Furthermore, we introduce a reinforcement learning (RL) framework for marketing operations, aiming to achieve maximum trading volumes under the dynamic and evolving market status. Experimental results on four datasets demonstrate that the proposed FL market can achieve high trading revenue and fair downstream task accuracy.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Continuity · Learning · Performer · 詞元分析器 ·
2024 年 3 月 18 日

Continual learning aims to refine model parameters for new tasks while retaining knowledge from previous tasks. Recently, prompt-based learning has emerged to leverage pre-trained models to be prompted to learn subsequent tasks without the reliance on the rehearsal buffer. Although this approach has demonstrated outstanding results, existing methods depend on preceding task-selection process to choose appropriate prompts. However, imperfectness in task-selection may lead to negative impacts on the performance particularly in the scenarios where the number of tasks is large or task distributions are imbalanced. To address this issue, we introduce I-Prompt, a task-agnostic approach focuses on the visual semantic information of image tokens to eliminate task prediction. Our method consists of semantic prompt matching, which determines prompts based on similarities between tokens, and image token-level prompting, which applies prompts directly to image tokens in the intermediate layers. Consequently, our method achieves competitive performance on four benchmarks while significantly reducing training time compared to state-of-the-art methods. Moreover, we demonstrate the superiority of our method across various scenarios through extensive experiments.

We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of $\tilde{O}(d^{3/2}H^{3/2}\sqrt{T})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $T$ is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.

Recently, there has been a growing interest in the use of deep learning techniques for tasks in natural language processing (NLP), with sentiment analysis being one of the most challenging areas, particularly in the Persian language. The vast amounts of content generated by Persian users on thousands of websites, blogs, and social networks such as Telegram, Instagram, and Twitter present a rich resource of information. Deep learning techniques have become increasingly favored for extracting insights from this extensive pool of raw data, although they face several challenges. In this study, we introduced and implemented a hybrid deep learning-based model for sentiment analysis, using customer review data from the Digikala Online Retailer website. We employed a variety of deep learning networks and regularization techniques as classifiers. Ultimately, our hybrid approach yielded an impressive performance, achieving an F1 score of 78.3 across three sentiment categories: positive, negative, and neutral.

EEG-based brainprint recognition with deep learning models has garnered much attention in biometric identification. Yet, studies have indicated vulnerability to adversarial attacks in deep learning models with EEG inputs. In this paper, we introduce a novel adversarial attack method that jointly attacks time-domain and frequency-domain EEG signals by employing wavelet transform. Different from most existing methods which only target time-domain EEG signals, our method not only takes advantage of the time-domain attack's potent adversarial strength but also benefits from the imperceptibility inherent in frequency-domain attack, achieving a better balance between attack performance and imperceptibility. Extensive experiments are conducted in both white- and grey-box scenarios and the results demonstrate that our attack method achieves state-of-the-art attack performance on three datasets and three deep-learning models. In the meanwhile, the perturbations in the signals attacked by our method are barely perceptible to the human visual system.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

北京阿比特科技有限公司