Instruction-finetuning (IFT) has become crucial in aligning Large Language Models (LLMs) with diverse human needs and has shown great potential in medical applications. However, previous studies mainly fine-tune LLMs on biomedical datasets with limited diversity, which often rely on benchmarks or narrow task scopes, and hence significantly limit the effectiveness on their medical instruction-following ability and generalizability. To bridge this gap, we propose creating a diverse, machine-generated medical IFT dataset, MedInstruct-52k, using GPT-4 and ChatGPT with a high-quality expert-curated seed set. We then fine-tune LLaMA-series models on the dataset to develop AlpaCare. Despite using a smaller domain-specific dataset than previous medical LLMs, AlpaCare not only demonstrates superior performance on medical applications, with up to 38.1% absolute gain over best baselines in medical free-form instruction evaluations, but also achieves 6.7% absolute gains averaged over multiple general domain benchmarks. Human evaluation further shows that AlpaCare consistently outperforms best baselines in terms of both correctness and helpfulness. We offer public access to our data, model, and codebase in //github.com/XZhang97666/AlpaCare.
Hate speech poses a significant threat to social harmony. Over the past two years, Indonesia has seen a ten-fold increase in the online hate speech ratio, underscoring the urgent need for effective detection mechanisms. However, progress is hindered by the limited availability of labeled data for Indonesian texts. The condition is even worse for marginalized minorities, such as Shia, LGBTQ, and other ethnic minorities because hate speech is underreported and less understood by detection tools. Furthermore, the lack of accommodation for subjectivity in current datasets compounds this issue. To address this, we introduce IndoToxic2024, a comprehensive Indonesian hate speech and toxicity classification dataset. Comprising 43,692 entries annotated by 19 diverse individuals, the dataset focuses on texts targeting vulnerable groups in Indonesia, specifically during the hottest political event in the country: the presidential election. We establish baselines for seven binary classification tasks, achieving a macro-F1 score of 0.78 with a BERT model (IndoBERTweet) fine-tuned for hate speech classification. Furthermore, we demonstrate how incorporating demographic information can enhance the zero-shot performance of the large language model, gpt-3.5-turbo. However, we also caution that an overemphasis on demographic information can negatively impact the fine-tuned model performance due to data fragmentation.
Vision Language Models (VLMs) have achieved impressive performance in 2D image understanding, however they are still struggling with spatial understanding which is the foundation of Embodied AI. In this paper, we propose SpatialBot for better spatial understanding by feeding both RGB and depth images. Additionally, we have constructed the SpatialQA dataset, which involves multi-level depth-related questions to train VLMs for depth understanding. Finally, we present SpatialBench to comprehensively evaluate VLMs' capabilities in spatial understanding at different levels. Extensive experiments on our spatial-understanding benchmark, general VLM benchmarks and Embodied AI tasks, demonstrate the remarkable improvements of SpatialBot trained on SpatialQA. The model, code and data are available at //github.com/BAAI-DCAI/SpatialBot.
Retrieval-Augmented Generation (RAG) can alleviate hallucinations of Large Language Models (LLMs) by referencing external documents. However, the misinformation in external documents may mislead LLMs' generation. To address this issue, we explore the task of "credibility-aware RAG", in which LLMs automatically adjust the influence of retrieved documents based on their credibility scores to counteract misinformation. To this end, we introduce a plug-and-play method named $\textbf{Cr}$edibility-aware $\textbf{A}$ttention $\textbf{M}$odification (CrAM). CrAM identifies influential attention heads in LLMs and adjusts their attention weights based on the credibility of the documents, thereby reducing the impact of low-credibility documents. Experiments on Natual Questions and TriviaQA using Llama2-13B, Llama3-8B, and Qwen-7B show that CrAM improves the RAG performance of LLMs against misinformation pollution by over 20%, even surpassing supervised fine-tuning methods.
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs -- M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at //github.com/mbzuai-nlp/M4GT-Bench.
Large Language Models (LLMs) have stunningly advanced the field of machine translation, though their effectiveness within the financial domain remains largely underexplored. To probe this issue, we constructed a fine-grained Chinese-English parallel corpus of financial news called FFN. We acquired financial news articles spanning between January 1st, 2014, to December 31, 2023, from mainstream media websites such as CNN, FOX, and China Daily. The dataset consists of 1,013 main text and 809 titles, all of which have been manually corrected. We measured the translation quality of two LLMs -- ChatGPT and ERNIE-bot, utilizing BLEU, TER and chrF scores as the evaluation metrics. For comparison, we also trained an OpenNMT model based on our dataset. We detail problems of LLMs and provide in-depth analysis, intending to stimulate further research and solutions in this largely uncharted territory. Our research underlines the need to optimize LLMs within the specific field of financial translation to ensure accuracy and quality.
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their extensive internal knowledge and reasoning capabilities. However, the black-box nature of these models complicates the task of explaining their decision-making processes. While recent advancements demonstrate the potential of leveraging LLMs to self-explain their predictions through natural language (NL) explanations, their explanations may not accurately reflect the LLMs' decision-making process due to a lack of fidelity optimization on the derived explanations. Measuring the fidelity of NL explanations is a challenging issue, as it is difficult to manipulate the input context to mask the semantics of these explanations. To this end, we introduce FaithLM to explain the decision of LLMs with NL explanations. Specifically, FaithLM designs a method for evaluating the fidelity of NL explanations by incorporating the contrary explanations to the query process. Moreover, FaithLM conducts an iterative process to improve the fidelity of derived explanations. Experiment results on three datasets from multiple domains demonstrate that FaithLM can significantly improve the fidelity of derived explanations, which also provides a better alignment with the ground-truth explanations.
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants. The broader integration of LLMs into society has sparked interest in whether they manifest psychological attributes, and whether these attributes are stable-inquiries that could deepen the understanding of their behaviors. Inspired by psychometrics, this paper presents a framework for investigating psychology in LLMs, including psychological dimension identification, assessment dataset curation, and assessment with results validation. Following this framework, we introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence. This benchmark includes thirteen datasets featuring diverse scenarios and item types. Our findings indicate that LLMs manifest a broad spectrum of psychological attributes. We also uncover discrepancies between LLMs' self-reported traits and their behaviors in real-world scenarios. This paper demonstrates a thorough psychometric assessment of LLMs, providing insights into reliable evaluation and potential applications in AI and social sciences.
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to generate and manipulate human language, highlighting their potential across various applications. Evaluating LLMs in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts, thus broadening their usability and effectiveness. We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy. Our study makes three primary contributions: Firstly, we adapt the INVALSI benchmark for automated LLM evaluation, which involves rigorous adaptation of the test format to suit automated processing while retaining the essence of the original tests. Secondly, we provide a detailed assessment of current LLMs, offering a crucial reference point for the academic community. Finally, we visually compare the performance of these models against human results. Additionally, researchers are invited to submit their models for ongoing evaluation, ensuring the benchmark remains a current and valuable resource.
We propose a novel concept of dual and integrated latent topologies (DITTO in short) for implicit 3D reconstruction from noisy and sparse point clouds. Most existing methods predominantly focus on single latent type, such as point or grid latents. In contrast, the proposed DITTO leverages both point and grid latents (i.e., dual latent) to enhance their strengths, the stability of grid latents and the detail-rich capability of point latents. Concretely, DITTO consists of dual latent encoder and integrated implicit decoder. In the dual latent encoder, a dual latent layer, which is the key module block composing the encoder, refines both latents in parallel, maintaining their distinct shapes and enabling recursive interaction. Notably, a newly proposed dynamic sparse point transformer within the dual latent layer effectively refines point latents. Then, the integrated implicit decoder systematically combines these refined latents, achieving high-fidelity 3D reconstruction and surpassing previous state-of-the-art methods on object- and scene-level datasets, especially in thin and detailed structures.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.