亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

CensSpatial is an R package for analyzing spatial censored data through linear models. It offers a set of tools for simulating, estimating, making predictions, and performing local influence diagnostics for outlier detection. The package provides four algorithms for estimation and prediction. One of them is based on the stochastic approximation of the EM (SAEM) algorithm, which allows easy and fast estimation of the parameters of linear spatial models when censoring is present. The package provides worthy measures to perform diagnostic analysis using the Hessian matrix of the completed log-likelihood function. This work is divided into two parts. The first part discusses and illustrates the utilities that the package offers for estimating and predicting spatial censored data. The second one describes the valuable tools to perform diagnostic analysis. Several examples in spatial environmental data are also provided.

相關內容

Understanding the patterns of human mobility between cities has various applications from transport engineering to spatial modeling of the spreading of contagious diseases. We adopt a city-centric, data-driven perspective to quantify such patterns and introduce the mobility signature as a tool for understanding how a city (or a region) is embedded in the wider mobility network. We demonstrate the potential of the mobility signature approach through two applications that build on mobile-phone-based data from Finland. First, we use mobility signatures to show that the well-known radiation model is more accurate for mobility flows associated with larger cities, while the traditional gravity model appears a better fit for less populated areas. Second, we illustrate how the SARS-CoV-2 pandemic disrupted the mobility patterns in Finland in the spring of 2020. These two cases demonstrate the ability of the mobility signatures to quickly capture features of mobility flows that are harder to extract using more traditional methods.

The R package "sensobol" provides several functions to conduct variance-based uncertainty and sensitivity analysis, from the estimation of sensitivity indices to the visual representation of the results. It implements several state-of-the-art first and total-order estimators and allows the computation of up to third-order effects, as well as of the approximation error, in a swift and user-friendly way. Its flexibility makes it also appropriate for models with either a scalar or a multivariate output. We illustrate its functionality by conducting a variance-based sensitivity analysis of three classic models: the Sobol' (1998) G function, the logistic population growth model of Verhulst (1845), and the spruce budworm and forest model of Ludwig, Jones and Holling (1976).

Recently, RobustBench (Croce et al. 2020) has become a widely recognized benchmark for the adversarial robustness of image classification networks. In its most commonly reported sub-task, RobustBench evaluates and ranks the adversarial robustness of trained neural networks on CIFAR10 under AutoAttack (Croce and Hein 2020b) with l-inf perturbations limited to eps = 8/255. With leading scores of the currently best performing models of around 60% of the baseline, it is fair to characterize this benchmark to be quite challenging. Despite its general acceptance in recent literature, we aim to foster discussion about the suitability of RobustBench as a key indicator for robustness which could be generalized to practical applications. Our line of argumentation against this is two-fold and supported by excessive experiments presented in this paper: We argue that I) the alternation of data by AutoAttack with l-inf, eps = 8/255 is unrealistically strong, resulting in close to perfect detection rates of adversarial samples even by simple detection algorithms and human observers. We also show that other attack methods are much harder to detect while achieving similar success rates. II) That results on low-resolution data sets like CIFAR10 do not generalize well to higher resolution images as gradient-based attacks appear to become even more detectable with increasing resolutions.

Type-preserving translations are effective rigorous tools in the study of core programming calculi. In this paper, we develop a new typed translation that connects sequential and concurrent calculi; it is governed by expressive type systems that control resource consumption. Our main contribution is the source language, a new resource \lambda-calculus with non-determinism and failures, dubbed \ulamf. In \ulamf, resources are sharply separated into linear and unrestricted; failures are explicit and arise following this separation. We equip \ulamf with a type system based on non-idempotent intersection types, which controls resources and fail-prone computation. The target language is an existing session-typed \pi-calculus, \spi, which results from a Curry-Howard correspondence between linear logic and session types for concurrency. Our typed translation of \ulamf into \spi subsumes our prior work; interestingly, it elegantly treats unrestricted resources in \lamrfailunres as client-server session behaviors in \spi.

A matrix formalism for the determination of the best estimator in certain simulation-based parameter estimation problems will be presented and discussed. The equations, termed as the Linear Template Fit, combine a linear regression with a least square method and its optimization. The Linear Template Fit employs only predictions that are calculated beforehand and which are provided for a few values of the parameter of interest. Therefore, the Linear Template Fit is particularly suited for parameter estimation with computationally intensive simulations that are otherwise often limited in their usability for statistical inference, or for performance critical applications. Equations for error propagation are discussed, and the analytic form provides comprehensive insights into the parameter estimation problem. Furthermore, the quickly-converging algorithm of the Quadratic Template Fit will be presented, which is suitable for a non-linear dependence on the parameters. As an example application, a determination of the strong coupling constant, $\alpha_s(m_Z)$, from inclusive jet cross section data at the CERN Large Hadron Collider is studied and compared with previously published results.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

We survey research on self-driving cars published in the literature focusing on autonomous cars developed since the DARPA challenges, which are equipped with an autonomy system that can be categorized as SAE level 3 or higher. The architecture of the autonomy system of self-driving cars is typically organized into the perception system and the decision-making system. The perception system is generally divided into many subsystems responsible for tasks such as self-driving-car localization, static obstacles mapping, moving obstacles detection and tracking, road mapping, traffic signalization detection and recognition, among others. The decision-making system is commonly partitioned as well into many subsystems responsible for tasks such as route planning, path planning, behavior selection, motion planning, and control. In this survey, we present the typical architecture of the autonomy system of self-driving cars. We also review research on relevant methods for perception and decision making. Furthermore, we present a detailed description of the architecture of the autonomy system of the UFES's car, IARA. Finally, we list prominent autonomous research cars developed by technology companies and reported in the media.

This work presents a region-growing image segmentation approach based on superpixel decomposition. From an initial contour-constrained over-segmentation of the input image, the image segmentation is achieved by iteratively merging similar superpixels into regions. This approach raises two key issues: (1) how to compute the similarity between superpixels in order to perform accurate merging and (2) in which order those superpixels must be merged together. In this perspective, we firstly introduce a robust adaptive multi-scale superpixel similarity in which region comparisons are made both at content and common border level. Secondly, we propose a global merging strategy to efficiently guide the region merging process. Such strategy uses an adpative merging criterion to ensure that best region aggregations are given highest priorities. This allows to reach a final segmentation into consistent regions with strong boundary adherence. We perform experiments on the BSDS500 image dataset to highlight to which extent our method compares favorably against other well-known image segmentation algorithms. The obtained results demonstrate the promising potential of the proposed approach.

Topic models are one of the most frequently used models in machine learning due to its high interpretability and modular structure. However extending the model to include supervisory signal, incorporate pre-trained word embedding vectors and add nonlinear output function to the model is not an easy task because one has to resort to highly intricate approximate inference procedure. In this paper, we show that topic models could be viewed as performing a neighborhood aggregation algorithm where the messages are passed through a network defined over words. Under the network view of topic models, nodes corresponds to words in a document and edges correspond to either a relationship describing co-occurring words in a document or a relationship describing same word in the corpus. The network view allows us to extend the model to include supervisory signals, incorporate pre-trained word embedding vectors and add nonlinear output function to the model in a simple manner. Moreover, we describe a simple way to train the model that is well suited in a semi-supervised setting where we only have supervisory signals for some portion of the corpus and the goal is to improve prediction performance in the held-out data. Through careful experiments we show that our approach outperforms state-of-the-art supervised Latent Dirichlet Allocation implementation in both held-out document classification tasks and topic coherence.

Deep reinforcement learning (RL) methods generally engage in exploratory behavior through noise injection in the action space. An alternative is to add noise directly to the agent's parameters, which can lead to more consistent exploration and a richer set of behaviors. Methods such as evolutionary strategies use parameter perturbations, but discard all temporal structure in the process and require significantly more samples. Combining parameter noise with traditional RL methods allows to combine the best of both worlds. We demonstrate that both off- and on-policy methods benefit from this approach through experimental comparison of DQN, DDPG, and TRPO on high-dimensional discrete action environments as well as continuous control tasks. Our results show that RL with parameter noise learns more efficiently than traditional RL with action space noise and evolutionary strategies individually.

北京阿比特科技有限公司