Increasing the throughput of the Transformer architecture, a foundational component used in numerous state-of-the-art models for vision and language tasks (e.g., GPT, LLaVa), is an important problem in machine learning. One recent and effective strategy is to merge token representations within Transformer models, aiming to reduce computational and memory requirements while maintaining accuracy. Prior works have proposed algorithms based on Bipartite Soft Matching (BSM), which divides tokens into distinct sets and merges the top k similar tokens. However, these methods have significant drawbacks, such as sensitivity to token-splitting strategies and damage to informative tokens in later layers. This paper presents a novel paradigm called PiToMe, which prioritizes the preservation of informative tokens using an additional metric termed the energy score. This score identifies large clusters of similar tokens as high-energy, indicating potential candidates for merging, while smaller (unique and isolated) clusters are considered as low-energy and preserved. Experimental findings demonstrate that PiToMe saved from 40-60\% FLOPs of the base models while exhibiting superior off-the-shelf performance on image classification (0.5\% average performance drop of ViT-MAE-H compared to 2.6\% as baselines), image-text retrieval (0.3\% average performance drop of CLIP on Flickr30k compared to 4.5\% as others), and analogously in visual questions answering with LLaVa-7B. Furthermore, PiToMe is theoretically shown to preserve intrinsic spectral properties of the original token space under mild conditions
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video). In this work, we propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers. Specifically, we employ a variational autoencoder (VAE) to represent continuous data as latent vectors and introduce next-token diffusion for autoregressive generation of these vectors. Additionally, we develop $\sigma$-VAE to address the challenges of variance collapse, which is crucial for autoregressive modeling. Extensive experiments demonstrate the effectiveness of LatentLM across various modalities. In image generation, LatentLM surpasses Diffusion Transformers in both performance and scalability. When integrated into multimodal large language models, LatentLM provides a general-purpose interface that unifies multimodal generation and understanding. Experimental results show that LatentLM achieves favorable performance compared to Transfusion and vector quantized models in the setting of scaling up training tokens. In text-to-speech synthesis, LatentLM outperforms the state-of-the-art VALL-E 2 model in speaker similarity and robustness, while requiring 10x fewer decoding steps. The results establish LatentLM as a highly effective and scalable approach to advance large multimodal models.
We initiate the focused study of constant-cost randomized communication, with emphasis on its connection to graph representations. We observe that constant-cost randomized communication problems are equivalent to hereditary (i.e. closed under taking induced subgraphs) graph classes which admit constant-size adjacency sketches and probabilistic universal graphs (PUGs), which are randomized versions of the well-studied adjacency labeling schemes and induced-universal graphs. This gives a new perspective on long-standing questions about the existence of these objects, including new methods of constructing adjacency labeling schemes. We ask three main questions about constant-cost communication, or equivalently, constant-size PUGs: (1) Are there any natural, non-trivial problems aside from Equality and k-Hamming Distance which have constant-cost communication? We provide a number of new examples, including deciding whether two vertices have path-distance at most k in a planar graph, and showing that constant-size PUGs are preserved by the Cartesian product operation. (2) What structures of a problem explain the existence or non-existence of a constant-cost protocol? We show that in many cases a Greater-Than subproblem is such a structure. (3) Is the Equality problem complete for constant-cost randomized communication? We show that it is not: there are constant-cost problems which do not reduce to Equality.
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
Despite the success of CNN models on a variety of Image classification and segmentation tasks, their extensive computational and storage demands pose considerable challenges for real-world deployment on resource constrained devices. Quantization is one technique that aims to alleviate these large storage requirements and speed up the inference process by reducing the precision of model parameters to lower-bit representations. In this paper, we introduce a novel post-training quantization method for model weights. Our method finds optimal clipping thresholds and scaling factors along with mathematical guarantees that our method minimizes quantization noise. Empirical results on Real World Datasets demonstrate that our quantization scheme significantly reduces model size and computational requirements while preserving model accuracy.
Functional data analysis, which models data as realizations of random functions over a continuum, has emerged as a useful tool for time series data. Often, the goal is to infer the dynamic connections (or time-varying conditional dependencies) among multiple functions or time series. For this task, a dynamic and Bayesian functional graphical model is introduced. The proposed modeling approach prioritizes the careful definition of an appropriate graph to identify both time-invariant and time-varying connectivity patterns. A novel block-structured sparsity prior is paired with a finite basis expansion, which together yield effective shrinkage and graph selection with efficient computations via a Gibbs sampling algorithm. Crucially, the model includes (one or more) graph changepoints, which are learned jointly with all model parameters and incorporate graph dynamics. Simulation studies demonstrate excellent graph selection capabilities, with significant improvements over competing methods. The proposed approach is applied to study of dynamic connectivity patterns of sea surface temperatures in the Pacific Ocean and reveals meaningful edges.
The opaque nature of transformer-based models, particularly in applications susceptible to unethical practices such as dark-patterns in user interfaces, requires models that integrate uncertainty quantification to enhance trust in predictions. This study focuses on dark-pattern detection, deceptive design choices that manipulate user decisions, undermining autonomy and consent. We propose a differential fine-tuning approach implemented at the final classification head via uncertainty quantification with transformer-based pre-trained models. Employing a dense neural network (DNN) head architecture as a baseline, we examine two methods capable of quantifying uncertainty: Spectral-normalized Neural Gaussian Processes (SNGPs) and Bayesian Neural Networks (BNNs). These methods are evaluated on a set of open-source foundational models across multiple dimensions: model performance, variance in certainty of predictions and environmental impact during training and inference phases. Results demonstrate that integrating uncertainty quantification maintains performance while providing insights into challenging instances within the models. Moreover, the study reveals that the environmental impact does not uniformly increase with the incorporation of uncertainty quantification techniques. The study's findings demonstrate that uncertainty quantification enhances transparency and provides measurable confidence in predictions, improving the explainability and clarity of black-box models. This facilitates informed decision-making and mitigates the influence of dark-patterns on user interfaces. These results highlight the importance of incorporating uncertainty quantification techniques in developing machine learning models, particularly in domains where interpretability and trustworthiness are critical.
This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Relying entirely on an attention mechanism, the Transformer introduced by Vaswani et al. (2017) achieves state-of-the-art results for machine translation. In contrast to recurrent and convolutional neural networks, it does not explicitly model relative or absolute position information in its structure. Instead, it requires adding representations of absolute positions to its inputs. In this work we present an alternative approach, extending the self-attention mechanism to efficiently consider representations of the relative positions, or distances between sequence elements. On the WMT 2014 English-to-German and English-to-French translation tasks, this approach yields improvements of 1.3 BLEU and 0.3 BLEU over absolute position representations, respectively. Notably, we observe that combining relative and absolute position representations yields no further improvement in translation quality. We describe an efficient implementation of our method and cast it as an instance of relation-aware self-attention mechanisms that can generalize to arbitrary graph-labeled inputs.