亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Subjective speech quality assessment (SSQA) is critical for evaluating speech samples as perceived by human listeners. While model-based SSQA has enjoyed great success thanks to the development of deep neural networks (DNNs), generalization remains a key challenge, especially for unseen, out-of-domain data. To benchmark the generalization abilities of SSQA models, we present MOS-Bench, a diverse collection of datasets. In addition, we also introduce SHEET, an open-source toolkit containing complete recipes to conduct SSQA experiments. We provided benchmark results for MOS-Bench, and we also explored multi-dataset training to enhance generalization. Additionally, we proposed a new performance metric, best score difference/ratio, and used latent space visualizations to explain model behavior, offering valuable insights for future research.

相關內容

We introduce the first highly multilingual speech and American Sign Language (ASL) comprehension dataset by extending BELEBELE. Our dataset covers 74 spoken languages at the intersection of BELEBELE and FLEURS, and one sign language (ASL). We evaluate 2M-BELEBELE dataset for both 5-shot and zero-shot settings and across languages, the speech comprehension accuracy is ~ 2-3% average lower compared to reading comprehension.

The metaphor studies community has developed numerous valuable labelled corpora in various languages over the years. Many of these resources are not only unknown to the NLP community, but are also often not easily shared among the researchers. Both in human sciences and in NLP, researchers could benefit from a centralised database of labelled resources, easily accessible and unified under an identical format. To facilitate this, we present MetaphorShare, a website to integrate metaphor datasets making them open and accessible. With this effort, our aim is to encourage researchers to share and upload more datasets in any language in order to facilitate metaphor studies and the development of future metaphor processing NLP systems. The website has four main functionalities: upload, download, search and label metaphor datasets. It is accessible at www.metaphorshare.com.

Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.

Partially observable Markov decision processes (POMDPs) form a prominent model for uncertainty in sequential decision making. We are interested in constructing algorithms with theoretical guarantees to determine whether the agent has a strategy ensuring a given specification with probability 1. This well-studied problem is known to be undecidable already for very simple omega-regular objectives, because of the difficulty of reasoning on uncertain events. We introduce a revelation mechanism which restricts information loss by requiring that almost surely the agent has eventually full information of the current state. Our main technical results are to construct exact algorithms for two classes of POMDPs called weakly and strongly revealing. Importantly, the decidable cases reduce to the analysis of a finite belief-support Markov decision process. This yields a conceptually simple and exact algorithm for a large class of POMDPs.

Undefined behavior in C often causes devastating security vulnerabilities. One practical mitigation is compartmentalization, which allows developers to structure large programs into mutually distrustful compartments with clearly specified privileges and interactions. In this paper we introduce SECOMP, a compiler for compartmentalized C code that comes with machine-checked proofs guaranteeing that the scope of undefined behavior is restricted to the compartments that encounter it and become dynamically compromised. These guarantees are formalized as the preservation of safety properties against adversarial contexts, a secure compilation criterion similar to full abstraction, and this is the first time such a strong criterion is proven for a mainstream programming language. To achieve this we extend the languages of the CompCert verified C compiler with isolated compartments that can only interact via procedure calls and returns, as specified by cross-compartment interfaces. We adapt the passes and optimizations of CompCert as well as their correctness proofs to this compartment-aware setting. We then use compiler correctness as an ingredient in a larger secure compilation proof that involves several proof engineering novelties, needed to scale formally secure compilation up to a C compiler.

High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking. A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.

As the Internet of Things (IoT) industry advances, the imperative to secure IoT devices has become increasingly critical. Current practices in both industry and academia advocate for the enhancement of device security through key installation. However, it has been observed that, in practice, IoT vendors frequently assign shared keys to batches of devices. This practice can expose devices to risks, such as data theft by attackers or large-scale Distributed Denial of Service (DDoS) attacks. To address this issue, our intuition is to assign a unique key to each device. Unfortunately, this strategy proves to be highly complex within the IoT context, as existing keys are typically hardcoded into the firmware, necessitating the creation of bespoke firmware for each device. Furthermore, correct pairing of device keys with their respective devices is crucial. Errors in this pairing process would incur substantial human and temporal resources to rectify and require extensive communication between IoT vendors, device manufacturers, and cloud platforms, leading to significant communication overhead. To overcome these challenges, we propose the OTA-Key scheme. This approach fundamentally decouples device keys from the firmware features stored in flash memory, utilizing an intermediary server to allocate unique device keys in two distinct stages and update keys. We conducted a formal security verification of our scheme using ProVerif and assessed its performance through a series of evaluations. The results demonstrate that our scheme is secure and effectively manages the large-scale distribution and updating of unique device keys. Additionally, it achieves significantly lower update times and data transfer volumes compared to other schemes.

Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of coding, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. In this case study, we explore the performance of LLMs across the entire software development lifecycle with DevEval, encompassing stages including software design, environment setup, implementation, acceptance testing, and unit testing. DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司