亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The data processing inequality is the most basic requirement for any meaningful measure of information. It essentially states that distinguishability measures between states decrease if we apply a quantum channel and is the centerpiece of many results in information theory. Moreover, it justifies the operational interpretation of most entropic quantities. In this work, we revisit the notion of contraction coefficients of quantum channels, which provide sharper and specialized versions of the data processing inequality. A concept closely related to data processing is partial orders on quantum channels. First, we discuss several quantum extensions of the well-known less noisy ordering and relate them to contraction coefficients. We further define approximate versions of the partial orders and show how they can give strengthened and conceptually simple proofs of several results on approximating capacities. Moreover, we investigate the relation to other partial orders in the literature and their properties, particularly with regards to tensorization. We then examine the relation between contraction coefficients with other properties of quantum channels such as hypercontractivity. Next, we extend the framework of contraction coefficients to general f-divergences and prove several structural results. Finally, we consider two important classes of quantum channels, namely Weyl-covariant and bosonic Gaussian channels. For those, we determine new contraction coefficients and relations for various partial orders.

相關內容

The unique and often-weird properties of quantum mechanics allow an information carrier to propagate through multiple trajectories of quantum channels simultaneously. This ultimately leads us to quantum trajectories with an indefinite causal order of quantum channels. It has been shown that indefinite causal order enables the violation of bottleneck capacity, which bounds the amount of the transferable classical and quantum information through a classical trajectory with a well-defined causal order of quantum channels. In this treatise, we investigate this beneficial property in the realm of both entanglement-assisted classical and quantum communications. To this aim, we derive closed-form capacity expressions of entanglement-assisted classical and quantum communication for arbitrary quantum Pauli channels over classical and quantum trajectories. We show that by exploiting the indefinite causal order of quantum channels, we obtain capacity gains over classical trajectory as well as the violation of bottleneck capacity for various practical scenarios. Furthermore, we determine the operating region where entanglement-assisted communication over quantum trajectory obtains capacity gain against classical trajectory and where the entanglement-assisted communication over quantum trajectory violates the bottleneck capacity.

We present symbolic and numerical methods for computing Poisson brackets on the spaces of measures with positive densities of the plane, the 2-torus, and the 2-sphere. We apply our methods to compute symplectic areas of finite regions for the case of the 2-sphere, including an explicit example for Gaussian measures with positive densities.

We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its performance have been obtained in the high-dimensional regime. Recently, an Approximate Message Passing (AMP) algorithm has been proposed as an alternative estimator with the potential to improve the accuracy of PCA. However, the existing analysis of AMP requires an initialization that is both correlated with the signal and independent of the noise, which is often unrealistic in practice. In this work, we combine the two methods, and propose to initialize AMP with PCA. Our main result is a rigorous asymptotic characterization of the performance of this estimator. Both the AMP algorithm and its analysis differ from those previously derived in the Gaussian setting: at every iteration, our AMP algorithm requires a specific term to account for PCA initialization, while in the Gaussian case, PCA initialization affects only the first iteration of AMP. The proof is based on a two-phase artificial AMP that first approximates the PCA estimator and then mimics the true AMP. Our numerical simulations show an excellent agreement between AMP results and theoretical predictions, and suggest an interesting open direction on achieving Bayes-optimal performance.

We consider the phase retrieval problem, in which the observer wishes to recover a $n$-dimensional real or complex signal $\mathbf{X}^\star$ from the (possibly noisy) observation of $|\mathbf{\Phi} \mathbf{X}^\star|$, in which $\mathbf{\Phi}$ is a matrix of size $m \times n$. We consider a \emph{high-dimensional} setting where $n,m \to \infty$ with $m/n = \mathcal{O}(1)$, and a large class of (possibly correlated) random matrices $\mathbf{\Phi}$ and observation channels. Spectral methods are a powerful tool to obtain approximate observations of the signal $\mathbf{X}^\star$ which can be then used as initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and unify previous results and approaches on spectral methods for the phase retrieval problem. More precisely, we combine the linearization of message-passing algorithms and the analysis of the \emph{Bethe Hessian}, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal spectral methods for arbitrary channel noise and right-unitarily invariant matrix $\mathbf{\Phi}$, in an automated manner (i.e. with no optimization over any hyperparameter or preprocessing function).

The sandwiched R\'enyi $\alpha$-divergences of two finite-dimensional quantum states play a distinguished role among the many quantum versions of R\'enyi divergences as the tight quantifiers of the trade-off between the two error probabilities in the strong converse domain of state discrimination. In this paper we show the same for the sandwiched R\'enyi divergences of two normal states on an injective von Neumann algebra, thereby establishing the operational significance of these quantities. Moreover, we show that in this setting, again similarly to the finite-dimensional case, the sandwiched R\'enyi divergences coincide with the regularized measured R\'enyi divergences, another distinctive feature of the former quantities. Our main tool is an approximation theorem (martingale convergence) for the sandwiched R\'enyi divergences, which may be used for the extension of various further results from the finite-dimensional to the von Neumann algebra setting. We also initiate the study of the sandwiched R\'enyi divergences of pairs of states on a $C^*$-algebra, and show that the above operational interpretation, as well as the equality to the regularized measured R\'enyi divergence, holds more generally for pairs of states on a nuclear $C^*$-algebra.

A piecewise Pad\'e-Chebyshev type (PiPCT) approximation method is proposed to minimize the Gibbs phenomenon in approximating piecewise smooth functions. A theorem on $L^1$-error estimate is proved for sufficiently smooth functions using a decay property of the Chebyshev coefficients. Numerical experiments are performed to show that the PiPCT method accurately captures isolated singularities of a function without using the positions and the types of singularities. Further, an adaptive partition approach to the PiPCT method is developed (referred to as the APiPCT method) to achieve the required accuracy with a lesser computational cost. Numerical experiments are performed to show some advantages of using the PiPCT and APiPCT methods compared to some well-known methods in the literature.

Much recent interest has focused on the design of optimization algorithms from the discretization of an associated optimization flow, i.e., a system of differential equations (ODEs) whose trajectories solve an associated optimization problem. Such a design approach poses an important problem: how to find a principled methodology to design and discretize appropriate ODEs. This paper aims to provide a solution to this problem through the use of contraction theory. We first introduce general mathematical results that explain how contraction theory guarantees the stability of the implicit and explicit Euler integration methods. Then, we propose a novel system of ODEs, namely the Accelerated-Contracting-Nesterov flow, and use contraction theory to establish it is an optimization flow with exponential convergence rate, from which the linear convergence rate of its associated optimization algorithm is immediately established. Remarkably, a simple explicit Euler discretization of this flow corresponds to the Nesterov acceleration method. Finally, we present how our approach leads to performance guarantees in the design of optimization algorithms for time-varying optimization problems.

We investigate variational principles for the approximation of quantum dynamics that apply for approximation manifolds that do not have complex linear tangent spaces. The first one, dating back to McLachlan (1964) minimizes the residuum of the time-dependent Schr\"odinger equation, while the second one, originating from the lecture notes of Kramer--Saraceno (1981), imposes the stationarity of an action functional. We characterize both principles in terms of metric and a symplectic orthogonality conditions, consider their conservation properties, and derive an elementary a-posteriori error estimate. As an application, we revisit the time-dependent Hartree approximation and frozen Gaussian wave packets.

Optimal $k$-thresholding algorithms are a class of sparse signal recovery algorithms that overcome the shortcomings of traditional hard thresholding algorithms caused by the oscillation of the residual function. In this paper, we provide a novel theoretical analysis for the data-time tradeoffs of optimal $k$-thresholding algorithms. Both the analysis and numerical results demonstrate that when the number of measurements is small, the algorithms cannot converge; when the number of measurements is suitably large, the number of measurements required for successful recovery has a negative correlation with the number of iterations and the algorithms can achieve linear convergence. Furthermore, the theory presents that the transition point of the number of measurements is on the order of $k \log({en}/{k})$, where $n$ is the dimension of the target signal.

One of the key steps in Neural Architecture Search (NAS) is to estimate the performance of candidate architectures. Existing methods either directly use the validation performance or learn a predictor to estimate the performance. However, these methods can be either computationally expensive or very inaccurate, which may severely affect the search efficiency and performance. Moreover, as it is very difficult to annotate architectures with accurate performance on specific tasks, learning a promising performance predictor is often non-trivial due to the lack of labeled data. In this paper, we argue that it may not be necessary to estimate the absolute performance for NAS. On the contrary, we may need only to understand whether an architecture is better than a baseline one. However, how to exploit this comparison information as the reward and how to well use the limited labeled data remains two great challenges. In this paper, we propose a novel Contrastive Neural Architecture Search (CTNAS) method which performs architecture search by taking the comparison results between architectures as the reward. Specifically, we design and learn a Neural Architecture Comparator (NAC) to compute the probability of candidate architectures being better than a baseline one. Moreover, we present a baseline updating scheme to improve the baseline iteratively in a curriculum learning manner. More critically, we theoretically show that learning NAC is equivalent to optimizing the ranking over architectures. Extensive experiments in three search spaces demonstrate the superiority of our CTNAS over existing methods.

北京阿比特科技有限公司