亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper considers the SUPPORTED model of distributed computing introduced by Schmid and Suomela [HotSDN'13], generalizing the LOCAL and CONGEST models. In this framework, multiple instances of the same problem, differing from each other by the subnetwork to which they apply, recur over time, and need to be solved efficiently online. To do that, one may rely on an initial preprocessing phase for computing some useful information. This preprocessing phase makes it possible, in some cases, to overcome locality-based time lower bounds. A first contribution of the current paper is expanding the spectrum of problem types to which the SUPPORTED model applies. In addition to subnetwork-defined recurrent problems, we introduce also recurrent problems of two additional types: (i) instances defined by partial client sets, and (ii) instances defined by partially fixed outputs. Our second contribution is illustrating the versatility of the SUPPORTED framework by examining recurrent variants of three classical graph problems. The first problem is Minimum Client Dominating Set (CDS), a recurrent version of the classical dominating set problem with each recurrent instance requiring us to dominate a partial client set. We provide a constant time approximation scheme for CDS on trees and planar graphs. The second problem is Color Completion (CC), a recurrent version of the coloring problem in which each recurrent instance comes with a partially fixed coloring (of some of the vertices) that must be completed. We study the minimum number of new colors and the minimum total number of colors necessary for completing this task. The third problem we study is a recurrent version of Locally Checkable Labellings (LCL) on paths of length $n$. We show that such problems have complexities that are either $\Theta(1)$ or $\Theta(n)$, extending the results of Foerster et al. [INFOCOM'19].

相關內容

Dynamic optimization of mean and variance in Markov decision processes (MDPs) is a long-standing challenge caused by the failure of dynamic programming. In this paper, we propose a new approach to find the globally optimal policy for combined metrics of steady-state mean and variance in an infinite-horizon undiscounted MDP. By introducing the concepts of pseudo mean and pseudo variance, we convert the original problem to a bilevel MDP problem, where the inner one is a standard MDP optimizing pseudo mean-variance and the outer one is a single parameter selection problem optimizing pseudo mean. We use the sensitivity analysis of MDPs to derive the properties of this bilevel problem. By solving inner standard MDPs for pseudo mean-variance optimization, we can identify worse policy spaces dominated by optimal policies of the pseudo problems. We propose an optimization algorithm which can find the globally optimal policy by repeatedly removing worse policy spaces. The convergence and complexity of the algorithm are studied. Another policy dominance property is also proposed to further improve the algorithm efficiency. Numerical experiments demonstrate the performance and efficiency of our algorithms. To the best of our knowledge, our algorithm is the first that efficiently finds the globally optimal policy of mean-variance optimization in MDPs. These results are also valid for solely minimizing the variance metrics in MDPs.

We study optimality for the safety-constrained Markov decision process which is the underlying framework for safe reinforcement learning. Specifically, we consider a constrained Markov decision process (with finite states and finite actions) where the goal of the decision maker is to reach a target set while avoiding an unsafe set(s) with certain probabilistic guarantees. Therefore the underlying Markov chain for any control policy will be multichain since by definition there exists a target set and an unsafe set. The decision maker also has to be optimal (with respect to a cost function) while navigating to the target set. This gives rise to a multi-objective optimization problem. We highlight the fact that Bellman's principle of optimality may not hold for constrained Markov decision problems with an underlying multichain structure (as shown by the counterexample). We resolve the counterexample by formulating the aforementioned multi-objective optimization problem as a zero-sum game and thereafter construct an asynchronous value iteration scheme for the Lagrangian (similar to Shapley's algorithm. Finally, we consider the reinforcement learning problem for the same and construct a modified Q-learning algorithm for learning the Lagrangian from data. We also provide a lower bound on the number of iterations required for learning the Lagrangian and corresponding error bounds.

Probabilistic programming languages (PPLs) make encoding and automatically solving statistical inference problems relatively easy by separating models from the inference algorithm. A popular choice for solving inference problems is to use Monte Carlo inference algorithms. For higher-order functional PPLs, these inference algorithms rely on execution suspension to perform inference, most often enabled through a full continuation-passing style (CPS) transformation. However, standard CPS transformations for PPL compilers introduce significant overhead, a problem the community has generally overlooked. State-of-the-art solutions either perform complete CPS transformations with performance penalties due to unnecessary closure allocations or use efficient, but complex, low-level solutions that are often not available in high-level languages. In contrast to prior work, we develop a new approach that is both efficient and easy to implement using higher-order languages. Specifically, we design a novel static suspension analysis technique that determines the parts of a program that require suspension, given a particular inference algorithm. The analysis result allows selectively CPS transforming the program only where necessary. We formally prove the correctness of the suspension analysis and implement both the suspension analysis and selective CPS transformation in the Miking CorePPL compiler. We evaluate the implementation for a large number of Monte Carlo inference algorithms on real-world models from phylogenetics, epidemiology, and topic modeling. The evaluation results demonstrate significant improvements across all models and inference algorithms.

The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et. al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Three communication cost minimization problems are defined based on different pattern of communication, which are the Data Redistribution Problem, Data Allocation Problem on Continuous data, and Data Allocation Problem on Categorized data. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the three problems in different communication pattern with the four kinds of objective cost functions, 12 problems are obtained. The hardness results and algorithms of the 12 problems make up the content of this paper. With rigorous proof, we prove that some of the 12 problems are in P, some FPT, some NP-complete, and some W[1]-complete. Approximate algorithms are proposed for several selected problems.

In FEM-based EEG and MEG source analysis, the subtraction approach has been proposed to simulate sensor measurements generated by neural activity. While this approach possesses a rigorous foundation and produces accurate results, its major downside is that it is computationally prohibitively expensive in practical applications. To overcome this, we developed a new approach, called the localized subtraction approach. This approach is designed to preserve the mathematical foundation of the subtraction approach, while also leading to sparse right-hand sides in the FEM formulation, making it efficiently computable. We achieve this by introducing a cut-off into the subtraction, restricting its influence to the immediate neighborhood of the source. In this work, this approach will be presented, analyzed, and compared to other state-of-the-art FEM right-hand side approaches. Furthermore, we discuss how to arrive at an efficient and stable implementation. We perform validation in multi-layer sphere models where analytical solutions exist. There, we demonstrate that the localized subtraction approach is vastly more efficient than the subtraction approach. Moreover, we find that for the EEG forward problem, the localized subtraction approach is less dependent on the global structure of the FEM mesh when compared to the subtraction approach. Additionally, we show the localized subtraction approach to rival, and in many cases even surpass, the other investigated approaches in terms of accuracy. For the MEG forward problem, we show the localized subtraction approach and the subtraction approach to produce highly accurate approximations of the volume currents close to the source. The localized subtraction approach thus reduces the computational cost of the subtraction approach to an extent that makes it usable in practical applications without sacrificing rigorousness and accuracy.

This work considers the low-rank approximation of a matrix $A(t)$ depending on a parameter $t$ in a compact set $D \subset \mathbb{R}^d$. Application areas that give rise to such problems include computational statistics and dynamical systems. Randomized algorithms are an increasingly popular approach for performing low-rank approximation and they usually proceed by multiplying the matrix with random dimension reduction matrices (DRMs). Applying such algorithms directly to $A(t)$ would involve different, independent DRMs for every $t$, which is not only expensive but also leads to inherently non-smooth approximations. In this work, we propose to use constant DRMs, that is, $A(t)$ is multiplied with the same DRM for every $t$. The resulting parameter-dependent extensions of two popular randomized algorithms, the randomized singular value decomposition and the generalized Nystr\"{o}m method, are computationally attractive, especially when $A(t)$ admits an affine linear decomposition with respect to $t$. We perform a probabilistic analysis for both algorithms, deriving bounds on the expected value as well as failure probabilities for the $L^2$ approximation error when using Gaussian random DRMs. Both, the theoretical results and numerical experiments, show that the use of constant DRMs does not impair their effectiveness; our methods reliably return quasi-best low-rank approximations.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

北京阿比特科技有限公司