We consider contextual bandit problems with knapsacks [CBwK], a problem where at each round, a scalar reward is obtained and vector-valued costs are suffered. The learner aims to maximize the cumulative rewards while ensuring that the cumulative costs are lower than some predetermined cost constraints. We assume that contexts come from a continuous set, that costs can be signed, and that the expected reward and cost functions, while unknown, may be uniformly estimated -- a typical assumption in the literature. In this setting, total cost constraints had so far to be at least of order $T^{3/4}$, where $T$ is the number of rounds, and were even typically assumed to depend linearly on $T$. We are however motivated to use CBwK to impose a fairness constraint of equalized average costs between groups: the budget associated with the corresponding cost constraints should be as close as possible to the natural deviations, of order $\sqrt{T}$. To that end, we introduce a dual strategy based on projected-gradient-descent updates, that is able to deal with total-cost constraints of the order of $\sqrt{T}$ up to poly-logarithmic terms. This strategy is more direct and simpler than existing strategies in the literature. It relies on a careful, adaptive, tuning of the step size.
Current compilers implement security features and optimizations that require nontrivial semantic reasoning about pointers and memory allocation: the program after the insertion of the security feature, or after applying the optimization, must simulate the original program despite a different memory layout. In this article, we illustrate such reasoning on pointer allocations through memory extensions and injections, as well as fine points on undefined values, by explaining how we implemented and proved correct two security features (stack canaries and pointer authentication) and one optimization (tail recursion elimination) in the CompCert formally verified compiler.
We prove a general structural theorem for a wide family of local algorithms, which includes property testers, local decoders, and PCPs of proximity. Namely, we show that the structure of every algorithm that makes $q$ adaptive queries and satisfies a natural robustness condition admits a sample-based algorithm with $n^{1- 1/O(q^2 \log^2 q)}$ sample complexity, following the definition of Goldreich and Ron (TOCT 2016). We prove that this transformation is nearly optimal. Our theorem also admits a scheme for constructing privacy-preserving local algorithms. Using the unified view that our structural theorem provides, we obtain results regarding various types of local algorithms, including the following. - We strengthen the state-of-the-art lower bound for relaxed locally decodable codes, obtaining an exponential improvement on the dependency in query complexity; this resolves an open problem raised by Gur and Lachish (SICOMP 2021). - We show that any (constant-query) testable property admits a sample-based tester with sublinear sample complexity; this resolves a problem left open in a work of Fischer, Lachish, and Vasudev (FOCS 2015) by extending their main result to adaptive testers. - We prove that the known separation between proofs of proximity and testers is essentially maximal; this resolves a problem left open by Gur and Rothblum (ECCC 2013, Computational Complexity 2018) regarding sublinear-time delegation of computation. Our techniques strongly rely on relaxed sunflower lemmas and the Hajnal-Szemer\'edi theorem.
Optimal motion planning along prescribed paths can be solved with several techniques, but most of them do not take into account the wrenches exerted by the end-effector when in contact with the environment. When a dynamic model of the environment is not available, no consolidated methodology exists to consider the effect of the interaction. Regardless of the specific performance index to optimize, this article proposes a strategy to include external wrenches in the optimal planning algorithm, considering the task specifications. This procedure is instantiated for minimum-time trajectories and validated on a real robot performing an interaction task under admittance control. The results prove that the inclusion of end-effector wrenches affect the planned trajectory, in fact modifying the manipulator's dynamic capability.
Uncertainty quantification for inverse problems in imaging has drawn much attention lately. Existing approaches towards this task define uncertainty regions based on probable values per pixel, while ignoring spatial correlations within the image, resulting in an exaggerated volume of uncertainty. In this paper, we propose PUQ (Principal Uncertainty Quantification) -- a novel definition and corresponding analysis of uncertainty regions that takes into account spatial relationships within the image, thus providing reduced volume regions. Using recent advancements in generative models, we derive uncertainty intervals around principal components of the empirical posterior distribution, forming an ambiguity region that guarantees the inclusion of true unseen values with a user-defined confidence probability. To improve computational efficiency and interpretability, we also guarantee the recovery of true unseen values using only a few principal directions, resulting in more informative uncertainty regions. Our approach is verified through experiments on image colorization, super-resolution, and inpainting; its effectiveness is shown through comparison to baseline methods, demonstrating significantly tighter uncertainty regions.
Causal inference from longitudinal observational data is a challenging problem due to the difficulty in correctly identifying the time-dependent confounders, especially in the presence of latent time-dependent confounders. Instrumental variable (IV) is a powerful tool for addressing the latent confounders issue, but the traditional IV technique cannot deal with latent time-dependent confounders in longitudinal studies. In this work, we propose a novel Time-dependent Instrumental Factor Model (TIFM) for time-varying causal effect estimation from data with latent time-dependent confounders. At each time-step, the proposed TIFM method employs the Recurrent Neural Network (RNN) architecture to infer latent IV, and then uses the inferred latent IV factor for addressing the confounding bias caused by the latent time-dependent confounders. We provide a theoretical analysis for the proposed TIFM method regarding causal effect estimation in longitudinal data. Extensive evaluation with synthetic datasets demonstrates the effectiveness of TIFM in addressing causal effect estimation over time. We further apply TIFM to a climate dataset to showcase the potential of the proposed method in tackling real-world problems.
Federated Learning (FL) has emerged as a promising solution to perform deep learning on different data owners without exchanging raw data. However, non-IID data has been a key challenge in FL, which could significantly degrade the accuracy of the final model. Among different non-IID types, label skews have been challenging and common in image classification and other tasks. Instead of averaging the local models in most previous studies, we propose FedConcat, a simple and effective approach that concatenates these local models as the base of the global model to effectively aggregate the local knowledge. To reduce the size of the global model, we adopt the clustering technique to group the clients by their label distributions and collaboratively train a model inside each cluster. We theoretically analyze the advantage of concatenation over averaging by analyzing the information bottleneck of deep neural networks. Experimental results demonstrate that FedConcat achieves significantly higher accuracy than previous state-of-the-art FL methods in various heterogeneous label skew distribution settings and meanwhile has lower communication costs. Our code is publicly available.
Quantum computing provides a new dimension in computation, utilizing the principles of quantum mechanics to potentially solve complex problems that are currently intractable for classical computers. However, little research has been conducted about the architecture decisions made in quantum software development, which have a significant influence on the functionality, performance, scalability, and reliability of these systems. The study aims to empirically investigate and analyze architecture decisions made during the development of quantum software systems, identifying prevalent challenges and limitations by using the posts and issues from Stack Exchange and GitHub. We used a qualitative approach to analyze the obtained data from Stack Exchange Sites and GitHub projects. Specifically, we collected data from 151 issues (from 47 GitHub projects) and 43 posts (from three Stack Exchange sites) related to architecture decisions in quantum software development. The results show that in quantum software development (1) architecture decisions are articulated in six linguistic patterns, the most common of which are Solution Proposal and Information Giving, (2) the two major categories of architectural decisions are Implementation Decision and Technology Decision, (3) Quantum Programming Framework is the most common application domain among the sixteen application domains identified, (4) Maintainability is the most frequently considered quality attribute, and (5) Design Issue and Performance Issue are the major limitations and challenges that practitioners face when making architecture decisions in quantum software development. Our results show that the limitations and challenges encountered in architecture decision-making during the development of quantum software systems are strongly linked to the particular features (e.g., quantum entanglement, superposition, and decoherence) of those systems.
Deep neural networks (DNNs) are susceptible to backdoor attacks, where malicious functionality is embedded to allow attackers to trigger incorrect classifications. Old-school backdoor attacks use strong trigger features that can easily be learned by victim models. Despite robustness against input variation, the robustness however increases the likelihood of unintentional trigger activations. This leaves traces to existing defenses, which find approximate replacements for the original triggers that can activate the backdoor without being identical to the original trigger via, e.g., reverse engineering and sample overlay. In this paper, we propose and investigate a new characteristic of backdoor attacks, namely, backdoor exclusivity, which measures the ability of backdoor triggers to remain effective in the presence of input variation. Building upon the concept of backdoor exclusivity, we propose Backdoor Exclusivity LifTing (BELT), a novel technique which suppresses the association between the backdoor and fuzzy triggers to enhance backdoor exclusivity for defense evasion. Extensive evaluation on three popular backdoor benchmarks validate, our approach substantially enhances the stealthiness of four old-school backdoor attacks, which, after backdoor exclusivity lifting, is able to evade six state-of-the-art backdoor countermeasures, at almost no cost of the attack success rate and normal utility. For example, one of the earliest backdoor attacks BadNet, enhanced by BELT, evades most of the state-of-the-art defenses including ABS and MOTH which would otherwise recognize the backdoored model.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.