The Expectation Maximization (EM) algorithm is the default algorithm for inference in latent variable models. As in any other field of machine learning, applications of latent variable models to very large datasets make the use of advanced parallel and distributed architectures mandatory. This paper introduces FedEM, which is the first extension of the EM algorithm to the federated learning context. FedEM is a new communication efficient method, which handles partial participation of local devices, and is robust to heterogeneous distributions of the datasets. To alleviate the communication bottleneck, FedEM compresses appropriately defined complete data sufficient statistics. We also develop and analyze an extension of FedEM to further incorporate a variance reduction scheme. In all cases, we derive finite-time complexity bounds for smooth non-convex problems. Numerical results are presented to support our theoretical findings, as well as an application to federated missing values imputation for biodiversity monitoring.
An important problem in causal inference is to break down the total effect of a treatment on an outcome into different causal pathways and to quantify the causal effect in each pathway. For instance, in causal fairness, the total effect of being a male employee (i.e., treatment) constitutes its direct effect on annual income (i.e., outcome) and the indirect effect via the employee's occupation (i.e., mediator). Causal mediation analysis (CMA) is a formal statistical framework commonly used to reveal such underlying causal mechanisms. One major challenge of CMA in observational studies is handling confounders, variables that cause spurious causal relationships among treatment, mediator, and outcome. Conventional methods assume sequential ignorability that implies all confounders can be measured, which is often unverifiable in practice. This work aims to circumvent the stringent sequential ignorability assumptions and consider hidden confounders. Drawing upon proxy strategies and recent advances in deep learning, we propose to simultaneously uncover the latent variables that characterize hidden confounders and estimate the causal effects. Empirical evaluations using both synthetic and semi-synthetic datasets validate the effectiveness of the proposed method. We further show the potentials of our approach for causal fairness analysis.
Chemistry research has both high material and computational costs to conduct experiments. Institutions thus consider chemical data to be valuable and there have been few efforts to construct large public datasets for machine learning. Another challenge is that different intuitions are interested in different classes of molecules, creating heterogeneous data that cannot be easily joined by conventional distributed training. In this work, we introduce federated heterogeneous molecular learning to address these challenges. Federated learning allows end-users to build a global model collaboratively while keeping the training data distributed over isolated clients. Due to the lack of related research, we first simulate a heterogeneous federated learning benchmark (FedChem) by jointly performing scaffold splitting and latent Dirichlet allocation on existing datasets for heterogeneously distributed client data. Our results on FedChem show that significant learning challenges arise when working with heterogeneous molecules across clients. We then propose a method to alleviate the problem, namely Federated Learning by Instance reweighTing (FLIT(+)). FLIT(+) can align the local training across heterogeneous clients by improving the performance for uncertain samples. Comprehensive experiments conducted on our new benchmark FedChem validate the advantages of this method over other federated learning schemes. FedChem should enable a new type of collaboration for improving AI in chemistry that mitigates concerns about valuable chemical data.
Federated Learning (FL) trains a machine learning model on distributed clients without exposing individual data. Unlike centralized training that is usually based on carefully-organized data, FL deals with on-device data that are often unfiltered and imbalanced. As a result, conventional FL training protocol that treats all data equally leads to a waste of local computational resources and slows down the global learning process. To this end, we propose FedBalancer, a systematic FL framework that actively selects clients' training samples. Our sample selection strategy prioritizes more "informative" data while respecting privacy and computational capabilities of clients. To better utilize the sample selection to speed up global training, we further introduce an adaptive deadline control scheme that predicts the optimal deadline for each round with varying client train data. Compared with existing FL algorithms with deadline configuration methods, our evaluation on five datasets from three different domains shows that FedBalancer improves the time-to-accuracy performance by 1.22~4.62x while improving the model accuracy by 1.0~3.3%. We also show that FedBalancer is readily applicable to other FL approaches by demonstrating that FedBalancer improves the convergence speed and accuracy when operating jointly with three different FL algorithms.
Percentiles and more generally, quantiles are commonly used in various contexts to summarize data. For most distributions, there is exactly one quantile that is unbiased. For distributions like the Gaussian that have the same mean and median, that becomes the medians. There are different ways to estimate quantiles from finite samples described in the literature and implemented in statistics packages. It is possible to leverage the memory-less property of the exponential distribution and design high quality estimators that are unbiased and have low variance and mean squared errors. Naturally, these estimators out-perform the ones in statistical packages when the underlying distribution is exponential. But, they also happen to generalize well when that assumption is violated.
Although Deep Neural Networks (DNNs) have shown incredible performance in perceptive and control tasks, several trustworthy issues are still open. One of the most discussed topics is the existence of adversarial perturbations, which has opened an interesting research line on provable techniques capable of quantifying the robustness of a given input. In this regard, the Euclidean distance of the input from the classification boundary denotes a well-proved robustness assessment as the minimal affordable adversarial perturbation. Unfortunately, computing such a distance is highly complex due the non-convex nature of NNs. Despite several methods have been proposed to address this issue, to the best of our knowledge, no provable results have been presented to estimate and bound the error committed. This paper addresses this issue by proposing two lightweight strategies to find the minimal adversarial perturbation. Differently from the state-of-the-art, the proposed approach allows formulating an error estimation theory of the approximate distance with respect to the theoretical one. Finally, a substantial set of experiments is reported to evaluate the performance of the algorithms and support the theoretical findings. The obtained results show that the proposed strategies approximate the theoretical distance for samples close to the classification boundary, leading to provable robustness guarantees against any adversarial attacks.
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks. In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge and may severely deteriorate the generalization performance. In this paper, we investigate and identify the limitation of several decentralized optimization algorithms for different degrees of data heterogeneity. We propose a novel momentum-based method to mitigate this decentralized training difficulty. We show in extensive empirical experiments on various CV/NLP datasets (CIFAR-10, ImageNet, and AG News) and several network topologies (Ring and Social Network) that our method is much more robust to the heterogeneity of clients' data than other existing methods, by a significant improvement in test performance ($1\% \!-\! 20\%$). Our code is publicly available.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.
In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (e.g., system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.