Genetic association studies for brain connectivity phenotypes have gained prominence due to advances in non-invasive imaging techniques and quantitative genetics. Brain connectivity traits, characterized by network configurations and unique biological structures, present distinct challenges compared to other quantitative phenotypes. Furthermore, the presence of sample relatedness in most imaging genetics studies limits the feasibility of adopting existing network-response modeling. In this paper, we fill this gap by proposing a Bayesian network-response mixed-effect model that considers a network-variate phenotype and incorporates population structures including pedigrees and unknown sample relatedness. To accommodate the inherent topological architecture associated with the genetic contributions to the phenotype, we model the effect components via a set of effect subnetworks and impose an inter-network sparsity and intra-network shrinkage to dissect the phenotypic network configurations affected by the risk genetic variant. To facilitate uncertainty quantification of signaling components from both genotype and phenotype sides, we develop a Markov chain Monte Carlo (MCMC) algorithm for posterior inference. We evaluate the performance and robustness of our model through extensive simulations. By further applying the method to study the genetic bases for brain structural connectivity using data from the Human Connectome Project with excessive family structures, we obtain plausible and interpretable results. Beyond brain connectivity genetic studies, our proposed model also provides a general linear mixed-effect regression framework for network-variate outcomes.
This paper proposes a novel signed $\beta$-model for directed signed network, which is frequently encountered in application domains but largely neglected in literature. The proposed signed $\beta$-model decomposes a directed signed network as the difference of two unsigned networks and embeds each node with two latent factors for in-status and out-status. The presence of negative edges leads to a non-concave log-likelihood, and a one-step estimation algorithm is developed to facilitate parameter estimation, which is efficient both theoretically and computationally. We also develop an inferential procedure for pairwise and multiple node comparisons under the signed $\beta$-model, which fills the void of lacking uncertainty quantification for node ranking. Theoretical results are established for the coverage probability of confidence interval, as well as the false discovery rate (FDR) control for multiple node comparison. The finite sample performance of the signed $\beta$-model is also examined through extensive numerical experiments on both synthetic and real-life networks.
Sentiment classification is a fundamental task in natural language processing, assigning one of the three classes, positive, negative, or neutral, to free texts. However, sentiment classification models are highly domain dependent; the classifier may perform classification with reasonable accuracy in one domain but not in another due to the Semantic multiplicity of words getting poor accuracy. This article presents a new Persian/Arabic multi-domain sentiment analysis method using the cumulative weighted capsule networks approach. Weighted capsule ensemble consists of training separate capsule networks for each domain and a weighting measure called domain belonging degree (DBD). This criterion consists of TF and IDF, which calculates the dependency of each document for each domain separately; this value is multiplied by the possible output that each capsule creates. In the end, the sum of these multiplications is the title of the final output, and is used to determine the polarity. And the most dependent domain is considered the final output for each domain. The proposed method was evaluated using the Digikala dataset and obtained acceptable accuracy compared to the existing approaches. It achieved an accuracy of 0.89 on detecting the domain of belonging and 0.99 on detecting the polarity. Also, for the problem of dealing with unbalanced classes, a cost-sensitive function was used. This function was able to achieve 0.0162 improvements in accuracy for sentiment classification. This approach on Amazon Arabic data can achieve 0.9695 accuracies in domain classification.
In Japan, the Housing and Land Survey (HLS) provides municipality-level grouped data on household incomes. Although these data can be used for effective local policymaking, their analyses are hindered by several challenges, such as limited information attributed to grouping, the presence of non-sampled areas, and the very low frequency of implementing surveys. To address these challenges, we propose a novel grouped-data-based spatio-temporal finite mixture model to model the income distributions of multiple spatial units at multiple time points. A unique feature of the proposed method is that all the areas share common latent distributions and that the mixing proportions that include the spatial and temporal effects capture the potential area-wise heterogeneity. Thus, incorporating these effects can smooth out the quantities of interest over time and space, impute missing values, and predict future values. By treating the HLS data with the proposed method, we obtain complete maps of the income and poverty measures at an arbitrary time point, which can be used to facilitate rapid and efficient policymaking with fine granularity.
Given the high incidence of cardio and cerebrovascular diseases (CVD), and its association with morbidity and mortality, its prevention is a major public health issue. A high level of blood pressure is a well-known risk factor for these events and an increasing number of studies suggest that blood pressure variability may also be an independent risk factor. However, these studies suffer from significant methodological weaknesses. In this work we propose a new location-scale joint model for the repeated measures of a marker and competing events. This joint model combines a mixed model including a subject-specific and time-dependent residual variance modeled through random effects, and cause-specific proportional intensity models for the competing events. The risk of events may depend simultaneously on the current value of the variance, as well as, the current value and the current slope of the marker trajectory. The model is estimated by maximizing the likelihood function using the Marquardt-Levenberg algorithm. The estimation procedure is implemented in a R-package and is validated through a simulation study. This model is applied to study the association between blood pressure variability and the risk of CVD and death from other causes. Using data from a large clinical trial on the secondary prevention of stroke, we find that the current individual variability of blood pressure is associated with the risk of CVD and death. Moreover, the comparison with a model without heterogeneous variance shows the importance of taking into account this variability in the goodness-of-fit and for dynamic predictions.
We study causal inference and efficient estimation for the expected number of recurrent events in the presence of a terminal event. We define our estimand as the vector comprising both the expected number of recurrent events and the failure survival function evaluated along a sequence of landmark times. We identify the estimand in the presence of right-censoring and causal selection as an observed data functional under coarsening at random, derive the nonparametric efficiency bound, and propose a multiply-robust estimator that achieves the bound and permits nonparametric estimation of nuisance parameters. Throughout, no absolute continuity assumption is made on the underlying probability distributions of failure, censoring, or the observed data. Additionally, we derive the class of influence functions when the coarsening distribution is known and review how published estimators may belong to the class. Along the way, we highlight some interesting inconsistencies in the causal lifetime analysis literature.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.