亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasing abundance of pretrained models in recent years, the problem of selecting the best pretrained checkpoint for a particular downstream classification task has been gaining increased attention. Although several methods have recently been proposed to tackle the selection problem (e.g. LEEP, H-score), these methods resort to applying heuristics that are not well motivated by learning theory. In this paper we present PACTran, a theoretically grounded family of metrics for pretrained model selection and transferability measurement. We first show how to derive PACTran metrics from the optimal PAC-Bayesian bound under the transfer learning setting. We then empirically evaluate three metric instantiations of PACTran on a number of vision tasks (VTAB) as well as a language-and-vision (OKVQA) task. An analysis of the results shows PACTran is a more consistent and effective transferability measure compared to existing selection methods.

相關內容

The human prioritization of image regions can be modeled in a time invariant fashion with saliency maps or sequentially with scanpath models. However, while both types of models have steadily improved on several benchmarks and datasets, there is still a considerable gap in predicting human gaze. Here, we leverage two recent developments to reduce this gap: theoretical analyses establishing a principled framework for predicting the next gaze target and the empirical measurement of the human cost for gaze switches independently of image content. We introduce an algorithm in the framework of sequential decision making, which converts any static saliency map into a sequence of dynamic history-dependent value maps, which are recomputed after each gaze shift. These maps are based on 1) a saliency map provided by an arbitrary saliency model, 2) the recently measured human cost function quantifying preferences in magnitude and direction of eye movements, and 3) a sequential exploration bonus, which changes with each subsequent gaze shift. The parameters of the spatial extent and temporal decay of this exploration bonus are estimated from human gaze data. The relative contributions of these three components were optimized on the MIT1003 dataset for the NSS score and are sufficient to significantly outperform predictions of the next gaze target on NSS and AUC scores for five state of the art saliency models on three image data sets. Thus, we provide an implementation of human gaze preferences, which can be used to improve arbitrary saliency models' predictions of humans' next gaze targets.

Interval-censored multi-state data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We formulate the effects of potentially time-dependent covariates on multi-state processes through semiparametric proportional intensity models with random effects. We adopt nonparametric maximum likelihood estimation (NPMLE) under general interval censoring and develop a stable expectation-maximization (EM) algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.

The variational auto-encoder has become a leading framework for symbolic music generation, and a popular research direction is to study how to effectively control the generation process. A straightforward way is to control a model using different conditions during inference. However, in music practice, conditions are usually sequential (rather than simple categorical labels), involving rich information that overlaps with the learned representation. Consequently, the decoder gets confused about whether to "listen to" the latent representation or the condition, and sometimes just ignores the condition. To solve this problem, we leverage domain adversarial training to disentangle the representation from condition cues for better control. Specifically, we propose a condition corruption objective that uses the representation to denoise a corrupted condition. Minimized by a discriminator and maximized by the VAE encoder, this objective adversarially induces a condition-invariant representation. In this paper, we focus on the task of melody harmonization to illustrate our idea, while our methodology can be generalized to other controllable generative tasks. Demos and experiments show that our methodology facilitates not only condition-invariant representation learning but also higher-quality controllability compared to baselines.

Automatically evaluating the coherence of summaries is of great significance both to enable cost-efficient summarizer evaluation and as a tool for improving coherence by selecting high-scoring candidate summaries. While many different approaches have been suggested to model summary coherence, they are often evaluated using disparate datasets and metrics. This makes it difficult to understand their relative performance and identify ways forward towards better summary coherence modelling. In this work, we conduct a large-scale investigation of various methods for summary coherence modelling on an even playing field. Additionally, we introduce two novel analysis measures, intra-system correlation and bias matrices, that help identify biases in coherence measures and provide robustness against system-level confounders. While none of the currently available automatic coherence measures are able to assign reliable coherence scores to system summaries across all evaluation metrics, large-scale language models fine-tuned on self-supervised tasks show promising results, as long as fine-tuning takes into account that they need to generalize across different summary lengths.

The availability of the sheer volume of Copernicus Sentinel-2 imagery has created new opportunities for exploiting deep learning (DL) methods for land use land cover (LULC) image classification. However, an extensive set of benchmark experiments is currently lacking, i.e. DL models tested on the same dataset, with a common and consistent set of metrics, and in the same hardware. In this work, we use the BigEarthNet Sentinel-2 dataset to benchmark for the first time different state-of-the-art DL models for the multi-label, multi-class LULC image classification problem, contributing with an exhaustive zoo of 60 trained models. Our benchmark includes standard CNNs, as well as non-convolutional methods. We put to the test EfficientNets and Wide Residual Networks (WRN) architectures, and leverage classification accuracy, training time and inference rate. Furthermore, we propose to use the EfficientNet framework for the compound scaling of a lightweight WRN. Enhanced with an Efficient Channel Attention mechanism, our scaled lightweight model emerged as the new state-of-the-art. It achieves 4.5% higher averaged F-Score classification accuracy for all 19 LULC classes compared to a standard ResNet50 baseline model, with an order of magnitude less trainable parameters. We provide access to all trained models, along with our code for distributed training on multiple GPU nodes. This model zoo of pre-trained encoders can be used for transfer learning and rapid prototyping in different remote sensing tasks that use Sentinel-2 data, instead of exploiting backbone models trained with data from a different domain, e.g., from ImageNet. We validate their suitability for transfer learning in different datasets of diverse volumes. Our top-performing WRN achieves state-of-the-art performance (71.1% F-Score) on the SEN12MS dataset while being exposed to only a small fraction of the training dataset.

Classifiers have been widely implemented in practice, while how to evaluate them properly remains a problem. Commonly used two types of metrics respectively based on confusion matrix and loss function have different advantages in flexibility and mathematical completeness, while they struggle in different dilemmas like the insensitivity to slight improvements or the lack of customizability in different tasks. In this paper, we propose a novel metric named Meta Pattern Concern Score based on the abstract representation of the probabilistic prediction, as well as the targeted design for processing negative classes in multi-classification and reducing the discreteness of metric value, to achieve advantages of both the two kinds of metrics and avoid their weaknesses. Our metric provides customizability to pick out the model for specific requirements in different practices, and make sure it is also fine under traditional metrics at the same time. Evaluation in four kinds of models and six datasets demonstrates the effectiveness and efficiency of our metric, and a case study shows it can select a model to reduce 0.53% of dangerous misclassifications by sacrificing only 0.04% of training accuracy.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司