亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a neural text-to-speech system for fine-grained prosody transfer from one speaker to another. Conventional approaches for end-to-end prosody transfer typically use either fixed-dimensional or variable-length prosody embedding via a secondary attention to encode the reference signal. However, when trained on a single-speaker dataset, the conventional prosody transfer systems are not robust enough to speaker variability, especially in the case of a reference signal coming from an unseen speaker. Therefore, we propose decoupling of the reference signal alignment from the overall system. For this purpose, we pre-compute phoneme-level time stamps and use them to aggregate prosodic features per phoneme, injecting them into a sequence-to-sequence text-to-speech system. We incorporate a variational auto-encoder to further enhance the latent representation of prosody embeddings. We show that our proposed approach is significantly more stable and achieves reliable prosody transplantation from an unseen speaker. We also propose a solution to the use case in which the transcription of the reference signal is absent. We evaluate all our proposed methods using both objective and subjective listening tests.

相關內容

語音合成(Speech Synthesis),也稱為文語轉換(Text-to-Speech, TTS,它是將任意的輸入文本轉換成自然流暢的語音輸出。語音合成涉及到人工智能、心理學、聲學、語言學、數字信號處理、計算機科學等多個學科技術,是信息處理領域中的一項前沿技術。 隨著計算機技術的不斷提高,語音合成技術從早期的共振峰合成,逐步發展為波形拼接合成和統計參數語音合成,再發展到混合語音合成;合成語音的質量、自然度已經得到明顯提高,基本能滿足一些特定場合的應用需求。目前,語音合成技術在銀行、醫院等的信息播報系統、汽車導航系統、自動應答呼叫中心等都有廣泛應用,取得了巨大的經濟效益。 另外,隨著智能手機、MP3、PDA 等與我們生活密切相關的媒介的大量涌現,語音合成的應用也在逐漸向娛樂、語音教學、康復治療等領域深入。可以說語音合成正在影響著人們生活的方方面面。

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Geometry and shape are fundamental aspects of visual style. Existing style transfer methods focus on texture-like components of style, ignoring geometry. We propose deformable style transfer (DST), an optimization-based approach that integrates texture and geometry style transfer. Our method is the first to allow geometry-aware stylization not restricted to any domain and not requiring training sets of matching style/content pairs. We demonstrate our method on a diverse set of content and style images including portraits, animals, objects, scenes, and paintings.

Fine-grained action recognition datasets exhibit environmental bias, where multiple video sequences are captured from a limited number of environments. Training a model in one environment and deploying in another results in a drop in performance due to an unavoidable domain shift. Unsupervised Domain Adaptation (UDA) approaches have frequently utilised adversarial training between the source and target domains. However, these approaches have not explored the multi-modal nature of video within each domain. In this work we exploit the correspondence of modalities as a self-supervised alignment approach for UDA in addition to adversarial alignment. We test our approach on three kitchens from our large-scale dataset, EPIC-Kitchens, using two modalities commonly employed for action recognition: RGB and Optical Flow. We show that multi-modal self-supervision alone improves the performance over source-only training by 2.4% on average. We then combine adversarial training with multi-modal self-supervision, showing that our approach outperforms other UDA methods by 3%.

In English, prosody adds a broad range of information to segment sequences, from information structure (e.g. contrast) to stylistic variation (e.g. expression of emotion). However, when learning to control prosody in text-to-speech voices, it is not clear what exactly the control is modifying. Existing research on discrete representation learning for prosody has demonstrated high naturalness, but no analysis has been performed on what these representations capture, or if they can generate meaningfully-distinct variants of an utterance. We present a phrase-level variational autoencoder with a multi-modal prior, using the mode centres as "intonation codes". Our evaluation establishes which intonation codes are perceptually distinct, finding that the intonation codes from our multi-modal latent model were significantly more distinct than a baseline using k-means clustering. We carry out a follow-up qualitative study to determine what information the codes are carrying. Most commonly, listeners commented on the intonation codes having a statement or question style. However, many other affect-related styles were also reported, including: emotional, uncertain, surprised, sarcastic, passive aggressive, and upset.

Tacotron-based text-to-speech (TTS) systems directly synthesize speech from text input. Such frameworks typically consist of a feature prediction network that maps character sequences to frequency-domain acoustic features, followed by a waveform reconstruction algorithm or a neural vocoder that generates the time-domain waveform from acoustic features. As the loss function is usually calculated only for frequency-domain acoustic features, that doesn't directly control the quality of the generated time-domain waveform. To address this problem, we propose a new training scheme for Tacotron-based TTS, referred to as WaveTTS, that has 2 loss functions: 1) time-domain loss, denoted as the waveform loss, that measures the distortion between the natural and generated waveform; and 2) frequency-domain loss, that measures the Mel-scale acoustic feature loss between the natural and generated acoustic features. WaveTTS ensures both the quality of the acoustic features and the resulting speech waveform. To our best knowledge, this is the first implementation of Tacotron with joint time-frequency domain loss. Experimental results show that the proposed framework outperforms the baselines and achieves high-quality synthesized speech.

While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch between the training and inference process, that results in unpredictable performance for out-of-domain test data at run-time. To overcome this, we propose a teacher-student training scheme for Tacotron-based TTS by introducing a distillation loss function in addition to the feature loss function. We first train a Tacotron2-based TTS model by always providing natural speech frames to the decoder, that serves as a teacher model. We then train another Tacotron2-based model as a student model, of which the decoder takes the predicted speech frames as input, similar to how the decoder works during run-time inference. With the distillation loss, the student model learns the output probabilities from the teacher model, that is called knowledge distillation. Experiments show that our proposed training scheme consistently improves the voice quality for out-of-domain test data both in Chinese and English systems.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of target mel-sprectrogram sequence for parallel mel-sprectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the skipped words and repeated words, and can adjust voice speed smoothly. Most importantly, compared with autoregressive models, our model speeds up the mel-sprectrogram generation by 270x. Therefore, we call our model FastSpeech. We will release the code on Github.

Although end-to-end neural text-to-speech (TTS) methods (such as Tacotron2) are proposed and achieve state-of-the-art performance, they still suffer from two problems: 1) low efficiency during training and inference; 2) hard to model long dependency using current recurrent neural networks (RNNs). Inspired by the success of Transformer network in neural machine translation (NMT), in this paper, we introduce and adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in Tacotron2. With the help of multi-head self-attention, the hidden states in the encoder and decoder are constructed in parallel, which improves the training efficiency. Meanwhile, any two inputs at different times are connected directly by self-attention mechanism, which solves the long range dependency problem effectively. Using phoneme sequences as input, our Transformer TTS network generates mel spectrograms, followed by a WaveNet vocoder to output the final audio results. Experiments are conducted to test the efficiency and performance of our new network. For the efficiency, our Transformer TTS network can speed up the training about 4.25 times faster compared with Tacotron2. For the performance, rigorous human tests show that our proposed model achieves state-of-the-art performance (outperforms Tacotron2 with a gap of 0.048) and is very close to human quality (4.39 vs 4.44 in MOS).

This paper investigates the impact of word-based RNN language models (RNN-LMs) on the performance of end-to-end automatic speech recognition (ASR). In our prior work, we have proposed a multi-level LM, in which character-based and word-based RNN-LMs are combined in hybrid CTC/attention-based ASR. Although this multi-level approach achieves significant error reduction in the Wall Street Journal (WSJ) task, two different LMs need to be trained and used for decoding, which increase the computational cost and memory usage. In this paper, we further propose a novel word-based RNN-LM, which allows us to decode with only the word-based LM, where it provides look-ahead word probabilities to predict next characters instead of the character-based LM, leading competitive accuracy with less computation compared to the multi-level LM. We demonstrate the efficacy of the word-based RNN-LMs using a larger corpus, LibriSpeech, in addition to WSJ we used in the prior work. Furthermore, we show that the proposed model achieves 5.1 %WER for WSJ Eval'92 test set when the vocabulary size is increased, which is the best WER reported for end-to-end ASR systems on this benchmark.

北京阿比特科技有限公司