亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many applications, researchers are interested in the direct and indirect causal effects of a treatment or exposure on an outcome of interest. Mediation analysis offers a rigorous framework for identifying and estimating these causal effects. For binary treatments, efficient estimators for the direct and indirect effects are presented by Tchetgen Tchetgen and Shpitser (2012) based on the influence function of the parameter of interest. These estimators possess desirable properties such as multiple-robustness and asymptotic normality while allowing for slower than root-n rates of convergence for the nuisance parameters. However, in settings involving continuous treatments, these influence function-based estimators are not readily applicable without making strong parametric assumptions. In this work, utilizing a kernel-smoothing approach, we propose an estimator suitable for settings with continuous treatments inspired by the influence function-based estimator of Tchetgen Tchetgen and Shpitser (2012). Our proposed approach employs cross-fitting, relaxing the smoothness requirements on the nuisance functions and allowing them to be estimated at slower rates than the target parameter. Additionally, similar to influence function-based estimators, our proposed estimator is multiply robust and asymptotically normal, allowing for inference in settings where parametric assumptions may not be justified.

相關內容

Policy search methods are crucial in reinforcement learning, offering a framework to address continuous state-action and partially observable problems. However, the complexity of exploring vast policy spaces can lead to significant inefficiencies. Reducing the policy space through policy compression emerges as a powerful, reward-free approach to accelerate the learning process. This technique condenses the policy space into a smaller, representative set while maintaining most of the original effectiveness. Our research focuses on determining the necessary sample size to learn this compressed set accurately. We employ R\'enyi divergence to measure the similarity between true and estimated policy distributions, establishing error bounds for good approximations. To simplify the analysis, we employ the $l_1$ norm, determining sample size requirements for both model-based and model-free settings. Finally, we correlate the error bounds from the $l_1$ norm with those from R\'enyi divergence, distinguishing between policies near the vertices and those in the middle of the policy space, to determine the lower and upper bounds for the required sample sizes.

The extraction of lung lesion information from clinical and medical imaging reports is crucial for research on and clinical care of lung-related diseases. Large language models (LLMs) can be effective at interpreting unstructured text in reports, but they often hallucinate due to a lack of domain-specific knowledge, leading to reduced accuracy and posing challenges for use in clinical settings. To address this, we propose a novel framework that aligns generated internal knowledge with external knowledge through in-context learning (ICL). Our framework employs a retriever to identify relevant units of internal or external knowledge and a grader to evaluate the truthfulness and helpfulness of the retrieved internal-knowledge rules, to align and update the knowledge bases. Experiments with expert-curated test datasets demonstrate that this ICL approach can increase the F1 score for key fields (lesion size, margin and solidity) by an average of 12.9% over existing ICL methods.

We employ techniques from group theory to show that, in many cases, counting problems on graphs are almost as hard to solve in a small number of instances as they are in all instances. Specifically, we show the following results. 1. Goldreich (2020) asks if, for every constant $\delta < 1 / 2$, there is an $\tilde{O} \left( n^2 \right)$-time randomized reduction from computing the number of $k$-cliques modulo $2$ with a success probability of greater than $2 / 3$ to computing the number of $k$-cliques modulo $2$ with an error probability of at most $\delta$. In this work, we show that for almost all choices of the $\delta 2^{n \choose 2}$ corrupt answers within the average-case solver, we have a reduction taking $\tilde{O} \left( n^2 \right)$-time and tolerating an error probability of $\delta$ in the average-case solver for any constant $\delta < 1 / 2$. By "almost all", we mean that if we choose, with equal probability, any subset $S \subset \{0,1\}^{n \choose 2}$ with $|S| = \delta2^{n \choose 2}$, then with a probability of $1-2^{-\Omega \left( n^2 \right)}$, we can use an average-case solver corrupt on $S$ to obtain a probabilistic algorithm. 2. Inspired by the work of Goldreich and Rothblum in FOCS 2018 to take the weighted versions of the graph counting problems, we prove that if the RETH is true, then for a prime $p = \Theta \left( 2^n \right)$, the problem of counting the number of unique Hamiltonian cycles modulo $p$ on $n$-vertex directed multigraphs and the problem of counting the number of unique half-cliques modulo $p$ on $n$-vertex undirected multigraphs, both require exponential time to compute correctly on even a $1 / 2^{n/\log n}$-fraction of instances. Meanwhile, simply printing $0$ on all inputs is correct on at least a $\Omega \left( 1 / 2^n \right)$-fraction of instances.

Thoracic trauma often results in rib fractures, which demand swift and accurate diagnosis for effective treatment. However, detecting these fractures on rib CT scans poses considerable challenges, involving the analysis of many image slices in sequence. Despite notable advancements in algorithms for automated fracture segmentation, the persisting challenges stem from the diverse shapes and sizes of these fractures. To address these issues, this study introduces a sophisticated deep-learning model with an auxiliary classification task designed to enhance the accuracy of rib fracture segmentation. The auxiliary classification task is crucial in distinguishing between fractured ribs and negative regions, encompassing non-fractured ribs and surrounding tissues, from the patches obtained from CT scans. By leveraging this auxiliary task, the model aims to improve feature representation at the bottleneck layer by highlighting the regions of interest. Experimental results on the RibFrac dataset demonstrate significant improvement in segmentation performance.

Asymptotic optimality is a key theoretical property in model averaging. Due to technical difficulties, existing studies rely on restricted weight sets or the assumption that there is no true model with fixed dimensions in the candidate set. The focus of this paper is to overcome these difficulties. Surprisingly, we discover that when the penalty factor in the weight selection criterion diverges with a certain order and the true model dimension is fixed, asymptotic loss optimality does not hold, but asymptotic risk optimality does. This result differs from the corresponding result of Fang et al. (2023, Econometric Theory 39, 412-441) and reveals that using the discrete weight set of Hansen (2007, Econometrica 75, 1175-1189) can yield opposite asymptotic properties compared to using the usual weight set. Simulation studies illustrate the theoretical findings in a variety of settings.

We propose and design recommendation systems that incentivize efficient exploration. Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions. The recommendation system presents each agent with actions and rewards from a subsequence of past agents, chosen ex ante. Thus, the agents engage in sequential social learning, moderated by these subsequences. We asymptotically attain optimal regret rate for exploration, using a flexible frequentist behavioral model and mitigating rationality and commitment assumptions inherent in prior work. We suggest three components of effective recommendation systems: independent focus groups, group aggregators, and interlaced information structures.

We study the benefits of complex-valued weights for neural networks. We prove that shallow complex neural networks with quadratic activations have no spurious local minima. In contrast, shallow real neural networks with quadratic activations have infinitely many spurious local minima under the same conditions. In addition, we provide specific examples to demonstrate that complex-valued weights turn poor local minima into saddle points.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

北京阿比特科技有限公司