亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In online learning problems, exploiting low variance plays an important role in obtaining tight performance guarantees yet is challenging because variances are often not known a priori. Recently, a considerable progress has been made by Zhang et al. (2021) where they obtain a variance-adaptive regret bound for linear bandits without knowledge of the variances and a horizon-free regret bound for linear mixture Markov decision processes (MDPs). In this paper, we present novel analyses that improve their regret bounds significantly. For linear bandits, we achieve $\tilde O(d^{1.5}\sqrt{\sum_{k}^K \sigma_k^2} + d^2)$ where $d$ is the dimension of the features, $K$ is the time horizon, and $\sigma_k^2$ is the noise variance at time step $k$, and $\tilde O$ ignores polylogarithmic dependence, which is a factor of $d^3$ improvement. For linear mixture MDPs, we achieve a horizon-free regret bound of $\tilde O(d^{1.5}\sqrt{K} + d^3)$ where $d$ is the number of base models and $K$ is the number of episodes. This is a factor of $d^3$ improvement in the leading term and $d^6$ in the lower order term. Our analysis critically relies on a novel elliptical potential `count' lemma. This lemma allows a peeling-based regret analysis, which can be of independent interest.

相關內容

We formulate em algorithm in the framework of Bregman divergence, which is a general problem setting of information geometry. That is, we address the minimization problem of the Bregman divergence between an exponential subfamily and a mixture subfamily in a Bregman divergence system. Then, we show the convergence and its speed under several conditions. We apply this algorithm to rate distortion and its variants including the quantum setting, and show the usefulness of our general algorithm.

This work studies the question of Representation Learning in RL: how can we learn a compact low-dimensional representation such that on top of the representation we can perform RL procedures such as exploration and exploitation, in a sample efficient manner. We focus on the low-rank Markov Decision Processes (MDPs) where the transition dynamics correspond to a low-rank transition matrix. Unlike prior works that assume the representation is known (e.g., linear MDPs), here we need to learn the representation for the low-rank MDP. We study both the online RL and offline RL settings. For the online setting, operating with the same computational oracles used in FLAMBE (Agarwal et.al), the state-of-art algorithm for learning representations in low-rank MDPs, we propose an algorithm REP-UCB Upper Confidence Bound driven Representation learning for RL), which significantly improves the sample complexity from $\widetilde{O}( A^9 d^7 / (\epsilon^{10} (1-\gamma)^{22}))$ for FLAMBE to $\widetilde{O}( A^2 d^4 / (\epsilon^2 (1-\gamma)^{5}) )$ with $d$ being the rank of the transition matrix (or dimension of the ground truth representation), $A$ being the number of actions, and $\gamma$ being the discounted factor. Notably, REP-UCB is simpler than FLAMBE, as it directly balances the interplay between representation learning, exploration, and exploitation, while FLAMBE is an explore-then-commit style approach and has to perform reward-free exploration step-by-step forward in time. For the offline RL setting, we develop an algorithm that leverages pessimism to learn under a partial coverage condition: our algorithm is able to compete against any policy as long as it is covered by the offline distribution.

This paper presents local minimax regret lower bounds for adaptively controlling linear-quadratic-Gaussian (LQG) systems. We consider smoothly parametrized instances and provide an understanding of when logarithmic regret is impossible which is both instance specific and flexible enough to take problem structure into account. This understanding relies on two key notions: That of local-uninformativeness; when the optimal policy does not provide sufficient excitation for identification of the optimal policy, and yields a degenerate Fisher information matrix; and that of information-regret-boundedness, when the small eigenvalues of a policy-dependent information matrix are boundable in terms of the regret of that policy. Combined with a reduction to Bayesian estimation and application of Van Trees' inequality, these two conditions are sufficient for proving regret bounds on order of magnitude $\sqrt{T}$ in the time horizon, $T$. This method yields lower bounds that exhibit tight dimensional dependencies and scale naturally with control-theoretic problem constants. For instance, we are able to prove that systems operating near marginal stability are fundamentally hard to learn to control. We further show that large classes of systems satisfy these conditions, among them any state-feedback system with both $A$- and $B$-matrices unknown. Most importantly, we also establish that a nontrivial class of partially observable systems, essentially those that are over-actuated, satisfy these conditions, thus providing a $\sqrt{T}$ lower bound also valid for partially observable systems. Finally, we turn to two simple examples which demonstrate that our lower bound captures classical control-theoretic intuition: our lower bounds diverge for systems operating near marginal stability or with large filter gain -- these can be arbitrarily hard to (learn to) control.

In bandits with distribution shifts, one aims to automatically detect an unknown number $L$ of changes in reward distribution, and restart exploration when necessary. While this problem remained open for many years, a recent breakthrough of Auer et al. (2018, 2019) provide the first adaptive procedure to guarantee an optimal (dynamic) regret $\sqrt{LT}$, for $T$ rounds, with no knowledge of $L$. However, not all distributional shifts are equally severe, e.g., suppose no best arm switches occur, then we cannot rule out that a regret $O(\sqrt{T})$ may remain possible; in other words, is it possible to achieve dynamic regret that optimally scales only with an unknown number of severe shifts? This unfortunately has remained elusive, despite various attempts (Auer et al., 2019, Foster et al., 2020). We resolve this problem in the case of two-armed bandits: we derive an adaptive procedure that guarantees a dynamic regret of order $\tilde{O}(\sqrt{\tilde{L} T})$, where $\tilde L \ll L$ captures an unknown number of severe best arm changes, i.e., with significant switches in rewards, and which last sufficiently long to actually require a restart. As a consequence, for any number $L$ of distributional shifts outside of these severe shifts, our procedure achieves regret just $\tilde{O}(\sqrt{T})\ll \tilde{O}(\sqrt{LT})$. Finally, we note that our notion of severe shift applies in both classical settings of stochastic switching bandits and of adversarial bandits.

We study the off-policy evaluation (OPE) problem in reinforcement learning with linear function approximation, which aims to estimate the value function of a target policy based on the offline data collected by a behavior policy. We propose to incorporate the variance information of the value function to improve the sample efficiency of OPE. More specifically, for time-inhomogeneous episodic linear Markov decision processes (MDPs), we propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration. We show that our algorithm achieves a tighter error bound than the best-known result. We also provide a fine-grained characterization of the distribution shift between the behavior policy and the target policy. Extensive numerical experiments corroborate our theory.

Many-user MAC is an important model for understanding energy efficiency of massive random access in 5G and beyond. Introduced in Polyanskiy'2017 for the AWGN channel, subsequent works have provided improved bounds on the asymptotic minimum energy-per-bit required to achieve a target per-user error at a given user density and payload, going beyond the AWGN setting. The best known rigorous bounds use spatially coupled codes along with the optimal AMP algorithm. But these bounds are infeasible to compute beyond a few (around 10) bits of payload. In this paper, we provide new achievability bounds for the many-user AWGN and quasi-static Rayleigh fading MACs using the spatially coupled codebook design along with a scalar AMP algorithm. The obtained bounds are computable even up to 100 bits and outperform the previous ones at this payload.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司