Network localization is capable of providing accurate and ubiquitous position information for numerous wireless applications. This paper studies the accuracy of cooperative network localization in large-scale wireless networks. Based on a decomposition of the equivalent Fisher information matrix (EFIM), we develop a random-walk-inspired approach for the analysis of EFIM, and propose a position information routing interpretation of cooperative network localization. Using this approach, we show that in large lattice and stochastic geometric networks, when anchors are uniformly distributed, the average localization error of agents grows logarithmically with the reciprocal of anchor density in an asymptotic regime. The results are further illustrated using numerical examples.
We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize communication costs. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe that there is also a trade-off between federation and communication cost there. As local devices may become inactive in the federated network, we also show convergence results based on different averaging schemes where only partial device updates are available.
Generative networks are opening new avenues in fast event generation for the LHC. We show how generative flow networks can reach percent-level precision for kinematic distributions, how they can be trained jointly with a discriminator, and how this discriminator improves the generation. Our joint training relies on a novel coupling of the two networks which does not require a Nash equilibrium. We then estimate the generation uncertainties through a Bayesian network setup and through conditional data augmentation, while the discriminator ensures that there are no systematic inconsistencies compared to the training data.
In this paper, we propose an offline-online strategy based on the Localized Orthogonal Decomposition (LOD) method for elliptic multiscale problems with randomly perturbed diffusion coefficient. We consider a periodic deterministic coefficient with local defects that occur with probability $p$. The offline phase pre-computes entries to global LOD stiffness matrices on a single reference element (exploiting the periodicity) for a selection of defect configurations. Given a sample of the perturbed diffusion the corresponding LOD stiffness matrix is then computed by taking linear combinations of the pre-computed entries, in the online phase. Our computable error estimates show that this yields a good coarse-scale approximation of the solution for small $p$, which is illustrated by extensive numerical experiments. This makes the proposed technique attractive already for moderate sample sizes in a Monte Carlo simulation.
In cooperative localization, communicating mobile agents use inter-agent relative measurements to improve their dead-reckoning-based global localization. Measurement scheduling enables an agent to decide which subset of available inter-agent relative measurements it should process when its computational resources are limited. Optimal measurement scheduling is an NP-hard combinatorial optimization problem. The so-called sequential greedy (SG) algorithm is a popular suboptimal polynomial-time solution for this problem. However, the merit function evaluation for the SG algorithms requires access to the state estimate vector and error covariance matrix of all the landmark agents (teammates that an agent can take measurements from). This paper proposes a measurement scheduling for CL that follows the SG approach but reduces the communication and computation cost by using a neural network-based surrogate model as a proxy for the SG algorithm's merit function. The significance of this model is that it is driven by local information and only a scalar metadata from the landmark agents. This solution addresses the time and memory complexity issues of running the SG algorithm in three ways: (a) reducing the inter-agent communication message size, (b) decreasing the complexity of function evaluations by using a simpler surrogate (proxy) function, (c) reducing the required memory size.Simulations demonstrate our results.
Device-to-device (D2D) communications is expected to be a critical enabler of distributed computing in edge networks at scale. A key challenge in providing this capability is the requirement for judicious management of the heterogeneous communication and computation resources that exist at the edge to meet processing needs. In this paper, we develop an optimization methodology that considers the network topology jointly with device and network resource allocation to minimize total D2D overhead, which we quantify in terms of time and energy required for task processing. Variables in our model include task assignment, CPU allocation, subchannel selection, and beamforming design for multiple-input multiple-output (MIMO) wireless devices. We propose two methods to solve the resulting non-convex mixed integer program: semi-exhaustive search optimization, which represents a "best-effort" at obtaining the optimal solution, and efficient alternate optimization, which is more computationally efficient. As a component of these two methods, we develop a novel coordinated beamforming algorithm which we show obtains the optimal beamformer for a common receiver characteristic. Through numerical experiments, we find that our methodology yields substantial improvements in network overhead compared with local computation and partially optimized methods, which validates our joint optimization approach. Further, we find that the efficient alternate optimization scales well with the number of nodes, and thus can be a practical solution for D2D computing in large networks.
The distributed convex optimization problem over the multi-agent system is considered in this paper, and it is assumed that each agent possesses its own cost function and communicates with its neighbours over a sequence of time-varying directed graphs. However, due to some reasons there exist communication delays while agents receive information from other agents, and we are going to seek the optimal value of the sum of agents' loss functions in this case. We desire to handle this problem with the push-sum distributed dual averaging (PS-DDA) algorithm which is introduced in \cite{Tsianos2012}. It is proved that this algorithm converges and the error decays at a rate $\mathcal{O}\left(T^{-0.5}\right)$ with proper step size, where $T$ is iteration span. The main result presented in this paper also illustrates the convergence of the proposed algorithm is related to the maximum value of the communication delay on one edge. We finally apply the theoretical results to numerical simulations to show the PS-DDA algorithm's performance.
Internet-of-Things (IoT) technology is envisioned to enable a variety of real-time applications by interconnecting billions of sensors/devices deployed to observe some random physical processes. These IoT devices rely on low-power wide-area wireless connectivity for transmitting, mostly fixed- but small-size, status updates of their associated random processes. The cellular networks are seen as a natural candidate for providing reliable wireless connectivity to IoT devices. However, the conventional orthogonal multiple access (OMA) to these massive number of devices is expected to degrade the spectral efficiency. As a promising alternative to OMA, the cellular base stations (BSs) can employ non-orthogonal multiple access (NOMA) for the uplink transmissions of mobile users and IoT devices. In particular, the uplink NOMA can be configured such that the mobile user can adapt transmission rate based on its channel condition while the IoT device transmits at a fixed rate. For this setting, we analyze the ergodic capacity of mobile users and the mean local delay of IoT devices using stochastic geometry. Our analysis demonstrates that the above NOMA configuration can provide better ergodic capacity for mobile users compare to OMA when IoT devices' delay constraint is strict. Furthermore, we also show that NOMA can support a larger packet size for IoT devices than OMA under the same delay constraint.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
Most state-of-the-art action localization systems process each action proposal individually, without explicitly exploiting their relations during learning. However, the relations between proposals actually play an important role in action localization, since a meaningful action always consists of multiple proposals in a video. In this paper, we propose to exploit the proposal-proposal relations using Graph Convolutional Networks (GCNs). First, we construct an action proposal graph, where each proposal is represented as a node and their relations between two proposals as an edge. Here, we use two types of relations, one for capturing the context information for each proposal and the other one for characterizing the correlations between distinct actions. Then we apply the GCNs over the graph to model the relations among different proposals and learn powerful representations for the action classification and localization. Experimental results show that our approach significantly outperforms the state-of-the-art on THUMOS14 (49.1% versus 42.8%). Moreover, augmentation experiments on ActivityNet also verify the efficacy of modeling action proposal relationships. Codes are available at //github.com/Alvin-Zeng/PGCN.
Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. We provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets in //github.com/cancam/LRP. Our source code can easily be adapted to other datasets as well.