亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we proposed a new dynamic distributed planning approach that is able to take into account the changes that the agent introduces on his set of actions to be planned in order to take into account the changes that occur in his environment. Our approach fits into the context of distributed planning for distributed plans where each agent can produce its own plans. According to our approach the generation of the plans is based on the satisfaction of the constraints by the use of the genetic algorithms. Our approach is to generate, a new plan by each agent, whenever there is a change in its set of actions to plan. This in order to take into account the new actions introduced in its new plan. In this new plan, the agent takes, each time, as a new action set to plan all the old un-executed actions of the old plan and the new actions engendered by the changes and as a new initial state; the state in which the set of actions of the agent undergoes a change. In our work, we used a concrete case to illustrate and demonstrate the utility of our approach.

相關內容

In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.

Clients often partner with AI experts to develop AI applications tailored to their needs. In these partnerships, careful planning and clear communication are critical, as inaccurate or incomplete specifications can result in misaligned model characteristics, expensive reworks, and potential friction between collaborators. Unfortunately, given the complexity of requirements ranging from functionality, data, and governance, effective guidelines for collaborative specification of requirements in client-AI expert collaborations are missing. In this work, we introduce AINeedsPlanner, a workbook that AI experts and clients can use to facilitate effective interchange and clear specifications. The workbook is based on (1) an interview of 10 completed AI application project teams, which identifies and characterizes steps in AI application planning and (2) a study with 12 AI experts, which defines a taxonomy of AI experts' information needs and dimensions that affect the information needs. Finally, we demonstrate the workbook's utility with two case studies in real-world settings.

In this work, we instantiate a regularized form of the gradient clipping algorithm and prove that it can converge to the global minima of deep neural network loss functions provided that the net is of sufficient width. We present empirical evidence that our theoretically founded regularized gradient clipping algorithm is also competitive with the state-of-the-art deep-learning heuristics. Hence the algorithm presented here constitutes a new approach to rigorous deep learning. The modification we do to standard gradient clipping is designed to leverage the PL* condition, a variant of the Polyak-Lojasiewicz inequality which was recently proven to be true for various neural networks for any depth within a neighborhood of the initialisation.

In this study, we introduce CT-LLM, a 2B large language model (LLM) that illustrates a pivotal shift towards prioritizing the Chinese language in developing LLMs. Uniquely initiated from scratch, CT-LLM diverges from the conventional methodology by primarily incorporating Chinese textual data, utilizing an extensive corpus of 1,200 billion tokens, including 800 billion Chinese tokens, 300 billion English tokens, and 100 billion code tokens. This strategic composition facilitates the model's exceptional proficiency in understanding and processing Chinese, a capability further enhanced through alignment techniques. Demonstrating remarkable performance on the CHC-Bench, CT-LLM excels in Chinese language tasks, and showcases its adeptness in English through SFT. This research challenges the prevailing paradigm of training LLMs predominantly on English corpora and then adapting them to other languages, broadening the horizons for LLM training methodologies. By open-sourcing the full process of training a Chinese LLM, including a detailed data processing procedure with the obtained Massive Appropriate Pretraining Chinese Corpus (MAP-CC), a well-chosen multidisciplinary Chinese Hard Case Benchmark (CHC-Bench), and the 2B-size Chinese Tiny LLM (CT-LLM), we aim to foster further exploration and innovation in both academia and industry, paving the way for more inclusive and versatile language models.

The increased adoption of additive manufacturing (AM) and the acceptance of AM outsourcing created an ecosystem in which the sending and receiving of digital designs by different actors became normal. It has recently been shown that the STL design files -- most commonly used in AM -- contain steganographic channels. Such channels can allow additional data to be embedded within the STL files without changing the printed model. These factors create a threat of misusing the design files as a covert communication channel to either exfiltrate stolen sensitive digital data from organizations or infiltrate malicious software into a secure environment. This paper addresses this security threat by designing and evaluating a \emph{sanitizer} that erases hidden content where steganographic channels might exist. The proposed sanitizer takes into account a set of specific constraints imposed by the application domain, such as not affecting the ability to manufacture part of the required quality using the sanitized design.

In this work, we present the MM-MATH dataset, a novel benchmark developed to rigorously evaluate the performance of advanced large language and multimodal models - including but not limited to GPT-4, GPT-4V, and Claude - within the domain of geometric computation. This dataset comprises 5,929 meticulously crafted geometric problems, each paired with a corresponding image, aimed at mirroring the complexity and requirements typical of ninth-grade mathematics. The motivation behind MM-MATH stems from the burgeoning interest and significant strides in multimodal technology, which necessitates a paradigm shift in assessment methodologies from mere outcome analysis to a more holistic evaluation encompassing reasoning and procedural correctness. Despite impressive gains in various benchmark performances, our analysis uncovers a persistent and notable deficiency in these models' ability to parse and interpret geometric information accurately from images, accounting for over 60% of observed errors. By deploying a dual-focused evaluation approach, examining both the end results and the underlying problem-solving processes, we unearthed a marked discrepancy between the capabilities of current multimodal models and human-level proficiency. The introduction of MM-MATH represents a tripartite contribution to the field: it not only serves as a comprehensive and challenging benchmark for assessing geometric problem-solving prowess but also illuminates critical gaps in textual and visual comprehension that current models exhibit. Through this endeavor, we aspire to catalyze further research and development aimed at bridging these gaps, thereby advancing the state of multimodal model capabilities to new heights.

In this work, we introduce DeepIPC, a novel end-to-end model tailored for autonomous driving, which seamlessly integrates perception and control tasks. Unlike traditional models that handle these tasks separately, DeepIPC innovatively combines a perception module, which processes RGBD images for semantic segmentation and generates bird's eye view (BEV) mappings, with a controller module that utilizes these insights along with GNSS and angular speed measurements to accurately predict navigational waypoints. This integration allows DeepIPC to efficiently translate complex environmental data into actionable driving commands. Our comprehensive evaluation demonstrates DeepIPC's superior performance in terms of drivability and multi-task efficiency across diverse real-world scenarios, setting a new benchmark for end-to-end autonomous driving systems with a leaner model architecture. The experimental results underscore DeepIPC's potential to significantly enhance autonomous vehicular navigation, promising a step forward in the development of autonomous driving technologies. For further insights and replication, we will make our code and datasets available at //github.com/oskarnatan/DeepIPC.

In this study, we propose a multi branched network approach to predict the dynamics of a physics attractor characterized by intricate and chaotic behavior. We introduce a unique neural network architecture comprised of Radial Basis Function (RBF) layers combined with an attention mechanism designed to effectively capture nonlinear inter-dependencies inherent in the attractor's temporal evolution. Our results demonstrate successful prediction of the attractor's trajectory across 100 predictions made using a real-world dataset of 36,700 time-series observations encompassing approximately 28 minutes of activity. To further illustrate the performance of our proposed technique, we provide comprehensive visualizations depicting the attractor's original and predicted behaviors alongside quantitative measures comparing observed versus estimated outcomes. Overall, this work showcases the potential of advanced machine learning algorithms in elucidating hidden structures in complex physical systems while offering practical applications in various domains requiring accurate short-term forecasting capabilities.

Data augmentations are known to improve robustness in speech-processing tasks. In this study, we summarize and compare different data augmentation strategies using S3PRL toolkit. We explore how HuBERT and wav2vec perform using different augmentation techniques (SpecAugment, Gaussian Noise, Speed Perturbation) for Phoneme Recognition (PR) and Automatic Speech Recognition (ASR) tasks. We evaluate model performance in terms of phoneme error rate (PER) and word error rate (WER). From the experiments, we observed that SpecAugment slightly improves the performance of HuBERT and wav2vec on the original dataset. Also, we show that models trained using the Gaussian Noise and Speed Perturbation dataset are more robust when tested with augmented test sets.

In this work, we provide data stream algorithms that compute optimal splits in decision tree learning. In particular, given a data stream of observations $x_i$ and their labels $y_i$, the goal is to find the optimal split point $j$ that divides the data into two sets such that the mean squared error (for regression) or misclassification rate (for classification) is minimized. We provide various fast streaming algorithms that use sublinear space and a small number of passes for these problems. These algorithms can also be extended to the massively parallel computation model. Our work, while not directly comparable, complements the seminal work of Domingos and Hulten (KDD 2000).

北京阿比特科技有限公司