亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Defect prediction aims at identifying software components that are likely to cause faults before a software is made available to the end-user. To date, this task has been modeled as a two-class classification problem, however its nature also allows it to be formulated as a one-class classification task. Previous studies show that One-Class Support Vector Machine (OCSVM) can outperform two-class classifiers for within-project defect prediction, however it is not effective when employed at a finer granularity (i.e., commit-level defect prediction). In this paper, we further investigate whether learning from one class only is sufficient to produce effective defect prediction model in two other different scenarios (i.e., granularity), namely cross-version and cross-project defect prediction models, as well as replicate the previous work at within-project granularity for completeness. Our empirical results confirm that OCSVM performance remain low at different granularity levels, that is, it is outperformed by the two-class Random Forest (RF) classifier for both cross-version and cross-project defect prediction. While, we cannot conclude that OCSVM is the best classifier, our results still show interesting findings. While OCSVM does not outperform RF, it still achieves performance superior to its two-class counterpart (i.e., SVM) as well as other two-class classifiers studied herein. We also observe that OCSVM is more suitable for both cross-version and cross-project defect prediction, rather than for within-project defect prediction, thus suggesting it performs better with heterogeneous data. We encourage further research on one-class classifiers for defect prediction as these techniques may serve as an alternative when data about defective modules is scarce or not available.

相關內容

在機器學習(xi)中,支(zhi)持(chi)向量機(SVM,也稱為支(zhi)持(chi)向量網絡(luo))是帶有相(xiang)關學習(xi)算(suan)法的監督學習(xi)模型(xing),該(gai)(gai)算(suan)法分(fen)(fen)(fen)析用于分(fen)(fen)(fen)類(lei)和回歸(gui)分(fen)(fen)(fen)析的數據。支(zhi)持(chi)向量機(SVM)算(suan)法是一(yi)(yi)(yi)種(zhong)流行(xing)的機器學習(xi)工具(ju),可為分(fen)(fen)(fen)類(lei)和回歸(gui)問題提供解(jie)決方(fang)案。給定一(yi)(yi)(yi)組訓(xun)練(lian)示(shi)(shi)(shi)例(li)(li),每(mei)個(ge)(ge)(ge)訓(xun)練(lian)示(shi)(shi)(shi)例(li)(li)都標記為屬于兩個(ge)(ge)(ge)類(lei)別(bie)(bie)中的一(yi)(yi)(yi)個(ge)(ge)(ge)或另(ling)一(yi)(yi)(yi)個(ge)(ge)(ge),則(ze)SVM訓(xun)練(lian)算(suan)法會構(gou)建一(yi)(yi)(yi)個(ge)(ge)(ge)模型(xing),該(gai)(gai)模型(xing)將新示(shi)(shi)(shi)例(li)(li)分(fen)(fen)(fen)配給一(yi)(yi)(yi)個(ge)(ge)(ge)類(lei)別(bie)(bie)或另(ling)一(yi)(yi)(yi)個(ge)(ge)(ge)類(lei)別(bie)(bie),使(shi)其成(cheng)為非概(gai)率二進制線性分(fen)(fen)(fen)類(lei)器(盡管(guan)方(fang)法存在諸如Platt縮放的問題,以便在概(gai)率分(fen)(fen)(fen)類(lei)設置中使(shi)用SVM)。SVM模型(xing)是將示(shi)(shi)(shi)例(li)(li)表示(shi)(shi)(shi)為空間(jian)(jian)中的點,并(bing)進行(xing)了映射,以使(shi)各(ge)個(ge)(ge)(ge)類(lei)別(bie)(bie)的示(shi)(shi)(shi)例(li)(li)被盡可能寬的明顯間(jian)(jian)隙分(fen)(fen)(fen)開。然后(hou),將新示(shi)(shi)(shi)例(li)(li)映射到相(xiang)同的空間(jian)(jian),并(bing)根據它(ta)們落入的間(jian)(jian)隙的側面來預測(ce)屬于一(yi)(yi)(yi)個(ge)(ge)(ge)類(lei)別(bie)(bie)。

知識薈萃

精(jing)品入門和進階教程、論文和代碼整理等

更多

查(cha)看相關VIP內(nei)容、論文、資(zi)訊等

Automated program repair techniques aim to aid software developers with the challenging task of fixing bugs. In heuristic-based program repair, a search space of program variants, created via mutations on software, is explored to find potential patches for bugs. Most commonly, every selection of a mutation operator during search is performed uniformly at random, whcih can generate many buggy, even uncompilable program variants. Our goal is to reduce the generation of variants that do not compile or break intended functionality which waste considerable resources. In this paper, we investigate the feasibility of a reinforcement learning-based approach for the selection of mutation operators in heuristic-based program repair. Our proposed approach is programming language, granularity-level, and search strategy agnostic and allows for easy augmentation into existing heuristic-based repair tools. We conduct an extensive empirical evaluation of four operator selection techniques, two reward types, two credit assignment strategies, two integration methods, and three sets of mutation operators using 30,080 independent repair attempts. We evaluate our approach on 353 real-world bugs from the Defects4J benchmark.The reinforcement learning-based mutation operator selection results in a higher number of test-passing variants, but does not exhibit a noticeable improvement in the number of bugs patched in comparison with the baseline, which uses random selection. While reinforcement learning has been previously shown to be successful in improving the search of evolutionary algorithms, often used in heuristic-based program repair, it has not shown such improvements when applied to this area of research.

[Context and motivation]: Understanding and interpreting regulatory norms and inferring software requirements from them is a critical step towards regulatory compliance, a matter of significant importance in various industrial sectors. [Question/ problem]: However, interpreting regulations still largely depends on individual legal expertise and experience within the respective domain, with little to no systematic methodologies and supportive tools to guide this practice. In fact, research in this area is too often detached from practitioners' experiences, rendering the proposed solutions not transferable to industrial practice. As we argue, one reason is that we still lack a profound understanding of industry- and domain-specific practices and challenges. [Principal ideas/ results]: We aim to close this gap and provide such an investigation at the example of the banking and insurance domain. We conduct an industrial multi-case study as part of a long-term academia-industry collaboration with a medium-sized software development and renovation company. We explore contemporary industrial practices and challenges when inferring requirements from regulations to support more problem-driven research. Our study investigates the complexities of requirement engineering in regulatory contexts, pinpointing various issues and discussing them in detail. We highlight the gathered insights and the practical challenges encountered and suggest avenues for future research. [Contribution]: Our contribution is a comprehensive case study focused on the FinTech domain, offering a detailed understanding of the specific needs within this sector. We have identified key practices for managing regulatory requirements in software development, and have pinpointed several challenges. We conclude by offering a set of recommendations for future problem-driven research directions.

Machine learning (ML) components are being added to more and more critical and impactful software systems, but the software development process of real-world production systems from prototyped ML models remains challenging with additional complexity and interdisciplinary collaboration challenges. This poses difficulties in using traditional software lifecycle models such as waterfall, spiral, or agile models when building ML-enabled systems. In this research, we apply a Systems Engineering lens to investigate the use of V-Model in addressing the interdisciplinary collaboration challenges when building ML-enabled systems. By interviewing practitioners from software companies, we established a set of 8 propositions for using V-Model to manage interdisciplinary collaborations when building products with ML components. Based on the propositions, we found that despite requiring additional efforts, the characteristics of V-Model align effectively with several collaboration challenges encountered by practitioners when building ML-enabled systems. We recommend future research to investigate new process models, frameworks and tools that leverage the characteristics of V-Model such as the system decomposition, clear system boundary, and consistency of Validation & Verification (V&V) for building ML-enabled systems.

Utilizing large language models to generate codes has shown promising meaning in software development revolution. Despite the intelligence shown by the general large language models, their specificity in code generation can still be improved due to the syntactic gap and mismatched vocabulary existing among natural language and different programming languages. In addition, programming languages are inherently logical and complex, making them hard to be correctly generated. Existing methods rely on multiple prompts to the large language model to explore better solutions, which is expensive. In this paper, we propose Syntax Graph Retrieval Augmented Code Generation (CodeGRAG) to enhance the performance of LLMs in single-round code generation tasks. CodeGRAG extracts and summarizes the control flow and data flow of code blocks to fill the gap between programming languages and natural language. The extracted external structural knowledge models the inherent flows of code blocks, which can facilitate LLMs for better understanding of code syntax and serve as a bridge among different programming languages. CodeGRAG significantly improves the code generation ability of LLMs and can even offer performance gain for cross-lingual code generation, e.g., C++ for Python.

Agile methods are state of the art in software development. Companies worldwide apply agile to counter the dynamics of the markets. We know, that various factors like culture influence the successfully application of agile methods in practice and the sucess is differing from company to company. To counter these problems, we combine two causal models presented in literature: The Agile Practices Impact Model and the Model of Cultural Impact. In this paper, we want to better understand the two facets of factors in agile: Those influencing their application and those impacting the results when applying them. This papers core contribution is the Agile Influence and Imact Model, describing the factors influencing agile elements and the impact on specific characteristics in a systematic manner.

Designing preference elicitation (PE) methodologies that can quickly ascertain a user's top item preferences in a cold-start setting is a key challenge for building effective and personalized conversational recommendation (ConvRec) systems. While large language models (LLMs) constitute a novel technology that enables fully natural language (NL) PE dialogues, we hypothesize that monolithic LLM NL-PE approaches lack the multi-turn, decision-theoretic reasoning required to effectively balance the NL exploration and exploitation of user preferences towards an arbitrary item set. In contrast, traditional Bayesian optimization PE methods define theoretically optimal PE strategies, but fail to use NL item descriptions or generate NL queries, unrealistically assuming users can express preferences with direct item ratings and comparisons. To overcome the limitations of both approaches, we formulate NL-PE in a Bayesian Optimization (BO) framework that seeks to generate NL queries which actively elicit natural language feedback to reduce uncertainty over item utilities to identify the best recommendation. We demonstrate our framework in a novel NL-PE algorithm, PEBOL, which uses Natural Language Inference (NLI) between user preference utterances and NL item descriptions to maintain preference beliefs and BO strategies such as Thompson Sampling (TS) and Upper Confidence Bound (UCB) to guide LLM query generation. We numerically evaluate our methods in controlled experiments, finding that PEBOL achieves up to 131% improvement in MAP@10 after 10 turns of cold start NL-PE dialogue compared to monolithic GPT-3.5, despite relying on a much smaller 400M parameter NLI model for preference inference.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

北京阿比特科技有限公司