News recommendations heavily rely on Natural Language Processing (NLP) methods to analyze, understand, and categorize content, enabling personalized suggestions based on user interests and reading behaviors. Large Language Models (LLMs) like GPT-4 have shown promising performance in understanding natural language. However, the extent of their applicability to news recommendation systems remains to be validated. This paper introduces RecPrompt, the first self-tuning prompting framework for news recommendation, leveraging the capabilities of LLMs to perform complex news recommendation tasks. This framework incorporates a news recommender and a prompt optimizer that applies an iterative bootstrapping process to enhance recommendations through automatic prompt engineering. Extensive experimental results with 400 users show that RecPrompt can achieve an improvement of 3.36% in AUC, 10.49% in MRR, 9.64% in nDCG@5, and 6.20% in nDCG@10 compared to deep neural models. Additionally, we introduce TopicScore, a novel metric to assess explainability by evaluating LLM's ability to summarize topics of interest for users. The results show LLM's effectiveness in accurately identifying topics of interest and delivering comprehensive topic-based explanations.
New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models.
AI companions based on large language models can role-play and converse very naturally. When value conflicts arise between the AI companion and the user, it may offend or upset the user. Yet, little research has examined such conflicts. We first conducted a formative study that analyzed 151 user complaints about conflicts with AI companions, providing design implications for our study. Based on these, we created Minion, a technology probe to help users resolve human-AI value conflicts. Minion applies a user-empowerment intervention method that provides suggestions by combining expert-driven and user-driven conflict resolution strategies. We conducted a technology probe study, creating 40 value conflict scenarios on Character.AI and Talkie. 22 participants completed 274 tasks and successfully resolved conflicts 94.16% of the time. We summarize user responses, preferences, and needs in resolving value conflicts, and propose design implications to reduce conflicts and empower users to resolve them more effectively.
In recent years, Large Language Models (LLMs) have demonstrated remarkable versatility across various applications, including natural language understanding, domain-specific knowledge tasks, etc. However, applying LLMs to complex, high-stakes domains like finance requires rigorous evaluation to ensure reliability, accuracy, and compliance with industry standards. To address this need, we conduct a comprehensive and comparative study on three state-of-the-art LLMs, GLM-4, Mistral-NeMo, and LLaMA3.1, focusing on their effectiveness in generating automated financial reports. Our primary motivation is to explore how these models can be harnessed within finance, a field demanding precision, contextual relevance, and robustness against erroneous or misleading information. By examining each model's capabilities, we aim to provide an insightful assessment of their strengths and limitations. Our paper offers benchmarks for financial report analysis, encompassing proposed metrics such as ROUGE-1, BERT Score, and LLM Score. We introduce an innovative evaluation framework that integrates both quantitative metrics (e.g., precision, recall) and qualitative analyses (e.g., contextual fit, consistency) to provide a holistic view of each model's output quality. Additionally, we make our financial dataset publicly available, inviting researchers and practitioners to leverage, scrutinize, and enhance our findings through broader community engagement and collaborative improvement. Our dataset is available on huggingface.
Vision Language Models (VLMs), pre-trained on large-scale image-text datasets, enable zero-shot predictions for unseen data but may underperform on specific unseen tasks. Continual learning (CL) can help VLMs effectively adapt to new data distributions without joint training, but faces challenges of catastrophic forgetting and generalization forgetting. Although significant progress has been achieved by distillation-based methods, they exhibit two severe limitations. One is the popularly adopted single-teacher paradigm fails to impart comprehensive knowledge, The other is the existing methods inadequately leverage the multimodal information in the original training dataset, instead they rely on additional data for distillation, which increases computational and storage overhead. To mitigate both limitations, by drawing on Knowledge Integration Theory (KIT), we propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods. MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections. During the four stages, we first leverage prototypes to align across modalities, eliciting cross-modal knowledge, then adding new knowledge by constructing fine-grained intra- and inter-modality relationships with prototypes. After that, knowledge from two teacher models is adaptively distinguished and re-weighted. Finally, we connect between models from intra- and inter-task, integrating preceding and new knowledge. Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks, showcasing its potential in adapting VLMs to evolving data distributions.
Large Vision Language Models exhibit remarkable capabilities but struggle with hallucinations inconsistencies between images and their descriptions. Previous hallucination evaluation studies on LVLMs have identified hallucinations in terms of objects, attributes, and relations but overlooked complex hallucinations that create an entire narrative around a fictional entity. In this paper, we introduce a refined taxonomy of hallucinations, featuring a new category: Event Hallucination. We then utilize advanced LLMs to generate and filter fine grained hallucinatory data consisting of various types of hallucinations, with a particular focus on event hallucinations, laying the groundwork for integrating discriminative and generative evaluation methods within our universal evaluation framework. The proposed benchmark distinctively assesses LVLMs ability to tackle a broad spectrum of hallucinations, making it a reliable and comprehensive tool for gauging LVLMs efficacy in handling hallucinations. We will release our code and data.
Recently, breakthroughs in video modeling have allowed for controllable camera trajectories in generated videos. However, these methods cannot be directly applied to user-provided videos that are not generated by a video model. In this paper, we present ReCapture, a method for generating new videos with novel camera trajectories from a single user-provided video. Our method allows us to re-generate the reference video, with all its existing scene motion, from vastly different angles and with cinematic camera motion. Notably, using our method we can also plausibly hallucinate parts of the scene that were not observable in the reference video. Our method works by (1) generating a noisy anchor video with a new camera trajectory using multiview diffusion models or depth-based point cloud rendering and then (2) regenerating the anchor video into a clean and temporally consistent reangled video using our proposed masked video fine-tuning technique.
Relying on paired synthetic data, existing learning-based Computational Aberration Correction (CAC) methods are confronted with the intricate and multifaceted synthetic-to-real domain gap, which leads to suboptimal performance in real-world applications. In this paper, in contrast to improving the simulation pipeline, we deliver a novel insight into real-world CAC from the perspective of Unsupervised Domain Adaptation (UDA). By incorporating readily accessible unpaired real-world data into training, we formalize the Domain Adaptive CAC (DACAC) task, and then introduce a comprehensive Real-world aberrated images (Realab) dataset to benchmark it. The setup task presents a formidable challenge due to the intricacy of understanding the target optical degradation domain. To this intent, we propose a novel Quantized Domain-Mixing Representation (QDMR) framework as a potent solution to the issue. Centering around representing and quantizing the optical degradation which is consistent across different images, QDMR adapts the CAC model to the target domain from three key aspects: (1) reconstructing aberrated images of both domains by a VQGAN to learn a Domain-Mixing Codebook (DMC) characterizing the optical degradation; (2) modulating the deep features in CAC model with DMC to transfer the target domain knowledge; and (3) leveraging the trained VQGAN to generate pseudo target aberrated images from the source ones for convincing target domain supervision. Extensive experiments on both synthetic and real-world benchmarks reveal that the models with QDMR consistently surpass the competitive methods in mitigating the synthetic-to-real gap, which produces visually pleasant real-world CAC results with fewer artifacts. Codes and datasets are made publicly available at //github.com/zju-jiangqi/QDMR.
Natural language processing (NLP) utilizes text data augmentation to overcome sample size constraints. Increasing the sample size is a natural and widely used strategy for alleviating these challenges. In this study, we chose Arabic to increase the sample size and correct grammatical errors. Arabic is considered one of the languages with limited resources for grammatical error correction (GEC). Furthermore, QALB-14 and QALB-15 are the only datasets used in most Arabic grammatical error correction research, with approximately 20,500 parallel examples, which is considered low compared with other languages. Therefore, this study aims to develop an Arabic corpus called "Tibyan" for grammatical error correction using ChatGPT. ChatGPT is used as a data augmenter tool based on a pair of Arabic sentences containing grammatical errors matched with a sentence free of errors extracted from Arabic books, called guide sentences. Multiple steps were involved in establishing our corpus, including the collection and pre-processing of a pair of Arabic texts from various sources, such as books and open-access corpora. We then used ChatGPT to generate a parallel corpus based on the text collected previously, as a guide for generating sentences with multiple types of errors. By engaging linguistic experts to review and validate the automatically generated sentences, we ensured that they were correct and error-free. The corpus was validated and refined iteratively based on feedback provided by linguistic experts to improve its accuracy. Finally, we used the Arabic Error Type Annotation tool (ARETA) to analyze the types of errors in the Tibyan corpus. Our corpus contained 49 of errors, including seven types: orthography, morphology, syntax, semantics, punctuation, merge, and split. The Tibyan corpus contains approximately 600 K tokens.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.