亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose the unfitted spectral element method for solving elliptic interface and corresponding eigenvalue problems. The novelty of the proposed method lies in its combination of the spectral accuracy of the spectral element method and the flexibility of the unfitted Nitsche's method. We also use tailored ghost penalty terms to enhance its robustness. We establish optimal $hp$ convergence rates for both elliptic interface problems and interface eigenvalue problems. Additionally, we demonstrate spectral accuracy for model problems in terms of polynomial degree.

相關內容

機器學習系統設計系統評估標準

This paper contributes to the study of optimal experimental design for Bayesian inverse problems governed by partial differential equations (PDEs). We derive estimates for the parametric regularity of multivariate double integration problems over high-dimensional parameter and data domains arising in Bayesian optimal design problems. We provide a detailed analysis for these double integration problems using two approaches: a full tensor product and a sparse tensor product combination of quasi-Monte Carlo (QMC) cubature rules over the parameter and data domains. Specifically, we show that the latter approach significantly improves the convergence rate, exhibiting performance comparable to that of QMC integration of a single high-dimensional integral. Furthermore, we numerically verify the predicted convergence rates for an elliptic PDE problem with an unknown diffusion coefficient in two spatial dimensions, offering empirical evidence supporting the theoretical results and highlighting practical applicability.

In this paper, a decimal first degree cellular automata (FDCA) based clustering algorithm is proposed where clusters are created based on reachability. Cyclic spaces are created and configurations which are in the same cycle are treated as the same cluster. Here, real-life data objects are encoded into decimal strings using G\"odel number based encoding. The benefits of the scheme is, it reduces the encoded string length while maintaining the features properties. Candidate CA rules are identified based on some theoretical criteria such as self-replication and information flow. An iterative algorithm is developed to generate the desired number of clusters over three stages. The results of the clustering are evaluated based on benchmark clustering metrics such as Silhouette score, Davis Bouldin, Calinski Harabasz and Dunn Index. In comparison with the existing state-of-the-art clustering algorithms, our proposed algorithm gives better performance.

In this study, we introduce "SARDiM," a modular semi-autonomous platform enhanced with mixed reality for industrial disassembly tasks. Through a case study focused on EV battery disassembly, SARDiM integrates Mixed Reality, object segmentation, teleoperation, force feedback, and variable autonomy. Utilising the ROS, Unity, and MATLAB platforms, alongside a joint impedance controller, SARDiM facilitates teleoperated disassembly. The approach combines FastSAM for real-time object segmentation, generating data which is subsequently processed through a cluster analysis algorithm to determine the centroid and orientation of the components, categorizing them by size and disassembly priority. This data guides the MoveIt platform in trajectory planning for the Franka Robot arm. SARDiM provides the capability to switch between two teleoperation modes: manual and semi-autonomous with variable autonomy. Each was evaluated using four different Interface Methods (IM): direct view, monitor feed, mixed reality with monitor feed, and point cloud mixed reality. Evaluations across the eight IMs demonstrated a 40.61% decrease in joint limit violations using Mode 2. Moreover, Mode 2-IM4 outperformed Mode 1-IM1 by achieving a 2.33%-time reduction while considerably increasing safety, making it optimal for operating in hazardous environments at a safe distance, with the same ease of use as teleoperation with a direct view of the environment.

In this paper, we present a new approach to bridge the domain gap between synthetic and real-world data for un- manned aerial vehicle (UAV)-based perception. Our formu- lation is designed for dynamic scenes, consisting of moving objects or human actions, where the goal is to recognize the pose or actions. We propose an extension of K-Planes Neural Radiance Field (NeRF), wherein our algorithm stores a set of tiered feature vectors. The tiered feature vectors are generated to effectively model conceptual information about a scene as well as an image decoder that transforms output feature maps into RGB images. Our technique leverages the information amongst both static and dynamic objects within a scene and is able to capture salient scene attributes of high altitude videos. We evaluate its performance on challenging datasets, including Okutama Action and UG2, and observe considerable improvement in accuracy over state of the art aerial perception algorithms.

When we think of model ensembling or ensemble modeling, there are many possibilities that come to mind in different disciplines. For example, one might think of a set of descriptions of a phenomenon in the world, perhaps a time series or a snapshot of multivariate space, and perhaps that set is comprised of data-independent descriptions, or perhaps it is quite intentionally fit *to* data, or even a suite of data sets with a common theme or intention. The very meaning of 'ensemble' - a collection together - conjures different ideas across and even within disciplines approaching phenomena. In this paper, we present a typology of the scope of these potential perspectives. It is not our goal to present a review of terms and concepts, nor is it to convince all disciplines to adopt a common suite of terms, which we view as futile. Rather, our goal is to disambiguate terms, concepts, and processes associated with 'ensembles' and 'ensembling' in order to facilitate communication, awareness, and possible adoption of tools across disciplines.

In this paper, we introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance. Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics. We personalize this strategy by selectively adding and removing a percentage of interactions from user profiles. This personalization ensures we remain closely aligned with user preferences while gradually introducing distribution shifts. Our pre-processing technique offers flexibility and can seamlessly integrate into any recommender architecture. To evaluate our approach, we run extensive experiments on two publicly available data sets for news and book recommendations. We test various standard and neural network-based recommender system algorithms. Our results show that our approach generates diverse recommendations, ensuring users are exposed to a wider range of items. Furthermore, leveraging pre-processed data for training leads to recommender systems achieving performance levels comparable to, and in some cases, better than those trained on original, unmodified data. Additionally, our approach promotes provider fairness by facilitating exposure to minority or niche categories.

In this paper, we develop a general theory for adaptive nonparametric estimation of the mean function of a non-stationary and nonlinear time series model using deep neural networks (DNNs). We first consider two types of DNN estimators, non-penalized and sparse-penalized DNN estimators, and establish their generalization error bounds for general non-stationary time series. We then derive minimax lower bounds for estimating mean functions belonging to a wide class of nonlinear autoregressive (AR) models that include nonlinear generalized additive AR, single index, and threshold AR models. Building upon the results, we show that the sparse-penalized DNN estimator is adaptive and attains the minimax optimal rates up to a poly-logarithmic factor for many nonlinear AR models. Through numerical simulations, we demonstrate the usefulness of the DNN methods for estimating nonlinear AR models with intrinsic low-dimensional structures and discontinuous or rough mean functions, which is consistent with our theory.

In this paper, we propose an efficient and accurate streaming speech recognition model based on the FastConformer architecture. We adapted the FastConformer architecture for streaming applications through: (1) constraining both the look-ahead and past contexts in the encoder, and (2) introducing an activation caching mechanism to enable the non-autoregressive encoder to operate autoregressively during inference. The proposed model is thoughtfully designed in a way to eliminate the accuracy disparity between the train and inference time which is common for many streaming models. Furthermore, our proposed encoder works with various decoder configurations including Connectionist Temporal Classification (CTC) and RNN-Transducer (RNNT) decoders. Additionally, we introduced a hybrid CTC/RNNT architecture which utilizes a shared encoder with both a CTC and RNNT decoder to boost the accuracy and save computation. We evaluate the proposed model on LibriSpeech dataset and a multi-domain large scale dataset and demonstrate that it can achieve better accuracy with lower latency and inference time compared to a conventional buffered streaming model baseline. We also showed that training a model with multiple latencies can achieve better accuracy than single latency models while it enables us to support multiple latencies with a single model. Our experiments also showed the hybrid architecture would not only speedup the convergence of the CTC decoder but also improves the accuracy of streaming models compared to single decoder models.

With the recent success of generative models in image and text, the evaluation of generative models has gained a lot of attention. Whereas most generative models are compared in terms of scalar values such as Frechet Inception Distance (FID) or Inception Score (IS), in the last years (Sajjadi et al., 2018) proposed a definition of precision-recall curve to characterize the closeness of two distributions. Since then, various approaches to precision and recall have seen the light (Kynkaanniemi et al., 2019; Naeem et al., 2020; Park & Kim, 2023). They center their attention on the extreme values of precision and recall, but apart from this fact, their ties are elusive. In this paper, we unify most of these approaches under the same umbrella, relying on the work of (Simon et al., 2019). Doing so, we were able not only to recover entire curves, but also to expose the sources of the accounted pitfalls of the concerned metrics. We also provide consistency results that go well beyond the ones presented in the corresponding literature. Last, we study the different behaviors of the curves obtained experimentally.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司